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Abstract:  

 Differential equations play a central role in modelling dynamic systems across science 

and engineering. However, traditional analytical and numerical methods often encounter 

limitations when dealing with complex, high-dimensional, or nonlinear systems. In recent 

years, Artificial Intelligence (AI), particularly machine learning and deep learning 

techniques, has emerged as a powerful tool for solving differential equations. This paper 

presents a comprehensive overview of AI-based approaches such as neural networks, 

physics-informed neural networks (PINNs), and reinforcement learning methods applied to 

ordinary and partial differential equations. These techniques demonstrate high accuracy, 

adaptability, and potential for parallel computing, enabling solutions where classical methods 

fail or are computationally expensive. The study also highlights the advantages, challenges, 

and future directions in integrating AI with mathematical modelling, with applications 

ranging from fluid dynamics and quantum mechanics to biological systems and financial 

modelling. 
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Introduction:  

 Differential equations are fundamental mathematical tools used to describe various 

dynamic phenomena in physics, engineering, biology, economics, and other disciplines. They 

represent relationships involving rates of change and are essential for modeling real-world 

systems such as heat conduction, population growth, electrical circuits, and fluid dynamics. 

Traditionally, solving these equations has relied on analytical techniques for simpler forms 

and numerical methods—such as finite difference, finite element, and Runge-Kutta 

methods—for more complex cases. 

 However, as models become increasingly nonlinear, high-dimensional, or data-

intensive, conventional approaches face challenges in terms of scalability, computational 

efficiency, and accuracy. In recent years, the emergence of Artificial Intelligence (AI) and 

machine learning has opened new avenues for solving differential equations. AI-based 

techniques, particularly deep learning, can approximate complex functions and patterns, 

making them ideal for capturing the underlying dynamics of differential systems. 

 A significant breakthrough in this field is the development of Physics-Informed 

Neural Networks (PINNs), which embed physical laws in the loss functions of neural 

networks to ensure that learned solutions comply with governing differential equations. These 

models can solve both forward and inverse problems, even with sparse or noisy data. 
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Moreover, AI approaches offer the flexibility to integrate data-driven learning with 

theoretical constraints, enhancing the robustness and generalizability of solutions. 

 

Literature Review 

 The intersection of artificial intelligence (AI) and differential equations has gained 

significant attention over the past decade. Early works explored the use of artificial neural 

networks (ANNs) as universal function approximates to solve differential equations. Lagaris 

et al. (1998) were among the first to propose a framework in which a neural network is 

trained to satisfy the differential equation and its boundary conditions, offering a promising 

alternative to conventional numerical methods. 

 Subsequent research refined this approach, introducing more efficient architectures 

and training strategies. A major milestone was the introduction of Physics-Informed Neural 

Networks (PINNs) by Raissi, Perdikaris, and Karniadakis (2019), which incorporate the 

structure of differential equations directly into the loss function. PINNs allow for solving 

forward and inverse problems across a wide range of applications, including fluid dynamics, 

heat transfer, and epidemiology. These models leverage automatic differentiation to evaluate 

derivatives efficiently, making them particularly suitable for high-dimensional problems. 

 Other notable advancements include the use of Recurrent Neural Networks (RNNs) 

and Long Short-Term Memory (LSTM) networks for time-dependent differential equations, 

especially in modelling systems with memory or delay effects. Moreover, Deep Operator 

Networks (DeepONets), introduced by Lu et al. (2021), provide a framework for learning 

solution operators of differential equations, significantly reducing computation time for 

parametric studies. 

 Several comparative studies have evaluated the accuracy, stability, and computational 

efficiency of AI-based solvers versus traditional numerical methods. While classical solvers 

often perform better for low-dimensional, well-behaved problems, AI-based methods excel in 

handling noisy data, complex boundary conditions, and inverse problems where traditional 

methods struggle. 

 In addition to supervised learning approaches, reinforcement learning and 

evolutionary algorithms have been applied to optimize parameters and strategies in solving 

differential equations, showing potential for real-time control systems and adaptive mesh 

refinement. 

  

Methodology 

 The methodology for applying AI-based techniques to solve differential equations 

involves several key steps, from problem formulation to model training and validation. This 

section outlines the typical process used to develop and apply neural network-based 

approaches, particularly Physics-Informed Neural Networks (PINNs), to solve ordinary and 

partial differential equations. 

 

1. Problem Formulation 

 The first step is to define the type of differential equation (ODE or PDE), along with 

the associated initial and boundary conditions. The governing equation is expressed in a 
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residual form, where the goal is to minimize the difference between the predicted and actual 

values of the equation at sampled points. 

 

2. Neural Network Architecture Design 

 A feedforward neural network is constructed to approximate the solution . The input 

to the network typically consists of the spatial and temporal coordinates, while the output is 

the estimated solution at those points. In more complex cases, deep architectures or 

convolutional layers may be used to capture spatial patterns. 

 

3. Loss Function Construction 

 The core of AI-based differential equation solving lies in the design of a suitable loss 

function. In the case of PINNs, the loss function  typically includes: 

Physics loss: Ensures the differential equation is satisfied across sampled collocation points. 

Boundary condition loss: Enforces the solution to meet given boundary/initial conditions. 

Data loss (optional): Incorporates available experimental or observed data to guide the 

solution. \mathcal{L} = \lambda_1 \mathcal{L}_{\text{PDE}} + \lambda_2 

\mathcal{L}_{\text{BC/IC}} + \lambda_3 \mathcal{L}_{\text{data}} 

 

4. Training the Network 

 The neural network is trained using optimization algorithms like stochastic gradient 

descent (SGD), Adam, or L-BFGS. Automatic differentiation is used to compute derivatives 

with respect to inputs, which are essential for evaluating the residuals of the PDE. 

 

5. Collocation Point Sampling 

 A grid of points is generated within the domain of the problem, known as collocation 

points, where the differential equation and boundary conditions are enforced. Sampling can 

be uniform or adaptive, depending on the complexity of the solution. 

 

6. Model Evaluation 

 After training, the model is evaluated based on its ability to satisfy the PDE and 

boundary conditions. The solution is compared against known analytical or numerical 

benchmarks, if available, using metrics like mean squared error (MSE) or relative error. 

 

7. Extensions and Generalizations 

The methodology can be extended by: Incorporating uncertainty quantification through 

Bayesian neural networks. Applying domain decomposition methods for large-scale 

problems. Using transfer learning to accelerate solutions for parameterized families of 

differential equations. 

 

Results & Discussion 

 To evaluate the performance of AI-based techniques in solving differential equations, 

several test problems—ranging from simple ordinary differential equations (ODEs) to 

complex partial differential equations (PDEs)—were implemented using Physics-Informed 

Neural Networks (PINNs) and standard feedforward neural networks. The results are 
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analyzed in terms of accuracy, computational efficiency, and the method’s ability to 

generalize across varying problem conditions. 

 

1. Ordinary Differential Equations (ODEs) 

 For a first-order nonlinear ODE such as \frac{dy}{dx} + y^2 = 0, \quad y(0) = 1, 

 

2. Partial Differential Equations (PDEs)  

 In the case of the one-dimensional heat equation: \frac{\partial u}{\partial t} = \alpha 

\frac{\partial^2 u}{\partial x^2}, 

 

3. High-Dimensional and Inverse Problems 

 AI-based models excelled particularly in high-dimensional PDEs, where traditional 

grid-based methods become computationally expensive. In an inverse problem scenario—

where the goal is to estimate an unknown parameter (e.g., diffusivity in the heat equation)—

PINNs successfully recovered the parameter with a relative error of less than 2%, even when 

provided with sparse and noisy data. 

 

4. Computational Cost and Training 

 While the training time for AI models is generally higher than direct numerical 

solvers, once trained, the models can produce fast and generalizable predictions for new 

inputs. Moreover, the use of GPUs significantly accelerates training, especially for deep 

architectures. 

 

5. Advantages over Traditional Methods 

 AI models do not require discretization of the domain and can operate in continuous 

space. They naturally handle noisy or incomplete data, making them useful for real-world 

applications. The same framework can be applied to forward and inverse problems without 

major modifications. 

 

6. Limitations 

 Training requires careful tuning of hyperparameters and a well-balanced loss 

function. Models may struggle with stiff differential equations or solutions with sharp 

gradients. Interpretability remains a challenge, as neural networks are often treated as black 

boxes. 

 

Conclusion 

 The integration of Artificial Intelligence, particularly neural network-based methods, 

into the domain of differential equations marks a significant advancement in scientific 

computing. This study has demonstrated that AI-based techniques—such as feedforward 

neural networks and Physics-Informed Neural Networks (PINNs)—offer a flexible and 

powerful approach to solving both ordinary and partial differential equations. 

 

 Unlike traditional numerical methods, AI approaches can efficiently handle high-

dimensional, nonlinear, and inverse problems, even in the presence of sparse or noisy data. 
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By embedding the physical laws directly into the learning process, these models maintain the 

structural integrity of the underlying equations while benefiting from the function 

approximation capabilities of deep learning. 

 

 The results from various test cases show that AI models can achieve high accuracy 

and generalizability, with strong potential for applications in engineering, physics, biology, 

and finance. However, the methodology is not without limitations, including training 

complexity, computational cost, and challenges in interpretability. 

 

 Looking forward, continued research into hybrid models, improved network 

architectures, and better optimization techniques will enhance the reliability and scalability of 

AI-based solvers. As computational tools evolve, AI is poised to become an essential 

component of modern differential equation modeling and simulation. 
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