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1. Introduction 

The concept of mathematical means was introduced and studied by Greek mathematicians during the 
fourth century A.D., particularly within the Pythagorean School, where it was rooted in the study of 
proportions and their significance [1]. Over time, numerous researchers have contributed to and 
advanced this field, motivated by its wide-ranging applications in various branches of science and 
technology.  

Relationships between series and important means [2], exploring the connections between Greek means 
and functional means [3], and introducing and studying the Gnan mean for both two and n variables 
[4]. They also investigated homogeneous functions and, as an application, derived several inequalities 
involving means [5].  

Furthermore, they studied the Oscillatory mean and Oscillatory-type means in the context of Greek 
means. Their work led to the proposal of several new means, their generalizations, and numerous related 
inequality results ([6], [7], [8], [9], [10], [11], [12]). A substantial body of work on Schur-convexity and 
properties of means has been documented in ([13],[14],[15],[16],[17],[18],[19]) while studies focused 
on the refinement of mean inequalities can be found in ([20], [21], [22]).  

In the literature, it is well known that for any two real numbers a and b the Arithmetic mean �(� , �) =
� � �

�
 , Geometric mean �(� , �) = √�� ,  Harmonic mean �(� , �) =

���

� � � 
 and Contra Harmonic mean 

 �(� , �) =
�� � ��

� � �
  represent fundamental types of means frequently studied in mathematical analysis. 

2. Definitions and Lemmas 

Few basic definitions and lemmas are listed which are associated to this study. 

Definition 2.1:[1] A Mean is defined as a function  �: ��
� → �� which satisfies the following 

properties: 

min���, ��, ��, … , ��� ≤ M���, ��, ��, … , ��� ≤ max���, ��, ��, … , ��� , ∀ �� ≥ 0,  1 ≤ � ≤ �,  
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Definition 2.2:[1] For all real numbers � and �, the Power mean is defined as; 

                              ��(� , �) = ��
��� ��

�
�

�

�  
,                      � ≠ 0

√��  ,                              � =  0

                                          (1) 

Remark: For � = 1, ��(� , �) =
� � �

�
 is Arithmetic mean (AM). 

               For � = 2, ��(� , �) = �
�����

�
 is Root mean square (RMS). 

Definition 2.3: [1] A mean � is called  � – Complementary to � if it satisfies �(� , �) = �.  

Suppose a given mean � has a unique  G – Complementary mean � is denoted by 

� = M(�) =  
��

�
. The G – Complementary mean is called Inverse.  

Lemma 2.4:[1] For �(�) = �� and � = (��,  ��,  ��) is just the determinant of Vander Monde’s 

matrix of the  2�� order takes the form.  

�(�; � = 2, � = 0) = �

1 �� ��
�

1 �� ��
�

1 �� ��
�

� = (�� − ��)(�� − ��)(�� − ��). 

Lemma 2.5:[1] Let �(�) and �(�) be two functions, then �(�) is said to be convex with respect to 

�(�) for � ≤ � ≤ � if and only if 

 �

1 �(�) �(�)
1 �(�) �(�)
1 �(�) �(�)

� ≥ 0 which is equivalent to �

1     �(�)     �(�)

 0    �(�) − �(�)   �(�) − �(�)

 0 �(�) − �(�) �(�) − �(�)

� ≥ 0. 

Lemma 2.6:[1] Let Ω ⊆  �� be symmetric with non−empty interior geometrically convex set and let  

� :  Ω → ��  be continuous on Ω and differentiable in  Ω�. If � is symmetric on  Ω then � is  

 �) (�� −  ��) � 
��

���
 −  

��

���
 �   ≥  0  (≤ 0)                       

 ��) (�� �� −  �� ��) � �� 
��

���
 −  ��

��

��� 
 � ≥  0  (≤ 0)   

 ���) (�� −  ��) � ��

� ��

���
 −  ��

� ��

���
 � ≥  0  (≤ 0)         

is a Schur convex (concave), Schur−geometrically convex (concave) and Schur−Harmonically 
convex (concave) function respectively. 

3.  Square Mean Root 

This section provides the definition and properties of square mean root. 

Definition 3.1: For any real numbers � and � the square mean root is defined as: 

���(� , �)  =  �
√�   +  √�

2
�

�

. 

Remark 3.2: This is a particular case of power mean,  ��

�

(� , �) = �
√�  � √�

�
�

�

. 
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This is also a hybrid mean, �(� , �) =
�

�
(� + �) =

�

�
�

���

�
+ √��� = �

√�  � √�

�
�

�

. 

Definition 3.3: The inverse of square mean root is defined as  ����(� , �) =
���

�√�  � √��
�   . 

4.  Methodology 

The analytical methods are applied in this article to prove the theorems by the use of partial derivatives 
and Taylor’s series expansions. To justify the convexity of the graphs are obtained by the software, 
Origin.   

5.  Results and Discussions  

This section provides the important results pertaining to G−Complementary to square root mean. 

 
Theorem 5.1: For � < �, verify that G−Complementary to square mean root is a mean. 

Proof: Case (1): For � < � ,   Consider,  ����(� , �) – � = 
���

�√�  � √� �
� − � = 

� ( �� � � ��√�� )

�√�  � √� �
�  > 0 

Which gives,  � <   ����(� , �) and hence Min (� , �) =   ����(� , �)  

Case (2): For � < b, Consider,  � –  ����(� , �) = � −  
���

�√�  � √� �
� = 

� ( � � �√��  � �� )

�√�  � √� �
�  > 0 

Which gives,   ����(� , �) <  � and hence  ����(� , �)  <  Max (� , �). 

Combining both the above cases, Min (� , �) <  ����(� , �) < Max (� , �). 

Therefore,   ����(� , �) is a Mean. Hence the proof of the theorem. 

Theorem 5.2: For � < �, the following inequality holds: 

 H <  ����(� , �) < G < A < C < �� < ���. 

Proof: This is to establish an inequality chain involving the G−Complementary to square mean root 

( ���� ). 

 ����(� , �) − �(� , �) = 
���

�√�   �  √� �
�  − �

� � �

�
� =  

���� �� � ��� � �√�� (���)

��√�   �  √� �
�   < 0 

 ����(� , �) − �(� , �) = 
���

�√�   �  √� �
�  − √��  =  

��� � √�� (���)

�√�   �  √� �
�   < 0 

 ����(� , �) − �(� , �) = 
���

�√�   �  √� �
�  − 

���

���
  =  

���� � ���� � ���√�� 

(���)�√�   �  √� �
�   > 0 

 ����(� , �) − �(� , �) = 
���

�√�   �  √� �
� − �

�����

���
� =  

���� �  ���� �  �√�� �������������

(���)�√�   �  √� �
�   < 0 

 ����(� , �) − ��(� , �) = 
���

�√�   �  √� �
� − �

� � √�� � � 

�
� =  

���� �� � ��� � �√�� (���)

��√�   �  √� �
�   < 0 

 ����(� , �) − ���(� , �) = 
���

�√�   �  √� �
� − �

�����

�
  =  

�√����� √�������√����� �����(�����)

√��√�   �  √� �
�   < 0 

 Combining the above, the following inequality chain is obtained 
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  H <  ����(� , �) < G < A < C < �� < ���. 

Theorem 5.3: The square mean root and G – Complementary to square mean root are related by the 

inequality  � <  ����(� , �) <  ���(� , �) < �. 

Proof: For � < �,  consider ���(� , �)  – ����(� , �) = �
√� � √�

�
�

�

 –   
���

�√�  � √� �
� 

                                                                                         = 
�√�  � √� �

�
 �  ����

�(√�  � √� )�    > 0     

Combining this inequality with lemma (4.1), gives � <  ����(� , �) < ���(� , �) < �. 

Hence the proof of the theorem. 

Theorem 5.4: The Inverse Square Mean Root is Convex with respect to Arithmetic Mean,         
                             ∀ � ≤ � ≤ �. 

Proof:   

Consider,  ����(� , �) = 
���

 �√�  � √� �
�    and  �(�, �) =

� � � 

�
 

If  � = � , � = 1  then  �(�) =  
��

 �√�  � � �
�  ,  �(�) =

� � � 

�
 then by lemma 2.5,      

Δ = �

1 �(�) �(�)

1 �(�) �(�)

1 �(�) �(�)
�    

 

   = �

1     �(�)     �(�)

 0    �(�) − �(�)   �(�) − �(�)

 0 �(�) − �(�) �(�) − �(�)

� 

   =
�

�

1            
��

 �√�  � � �
�           

��� 

�

 0          
��

 �√�  � � �
�  −  

��

 �√�  � � �
�       �

��� 

�
� − �

��� 

�
�

  0                
��

 �√�  � � �
�  −  

��

 �√�  � � �
�             �

��� 

�
� − �

��� 

�
�

�

�
 

   =

�

�

1       
��

 �√�  � � �
�         

��� 

�

 0            
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�         �

��� 

�
�

  0                
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�            �

��� 

�
�

�

�

 

   = 1 �
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
� � �

��� 

�
� −  � 

���√�  � � �
�

� ���√�  � � �
�

 �√�  � � �
�

�√�  � � �
� � �

��� 

�
�   

   =
�

�
�

(����)(���)

 �√�  � � �
�  – 

(����)(���)

 �√�  � � �
�  �     

   =
(���)(���)

�
�

�

 �√�  � � �
�  – 

�

 �√�  � � �
� �  > 0.  
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Hence the theorem. 

The graph below represents the convexity of  ���� with respect to AM 

 

                      Figure 5.1: Convexity of  ���� with respect to AM 

From the figure 5.1, the graph of AM lies above every chord (line segment) connecting any two points 

on the curve when those points are compared based on the corresponding values of  ����.  Also,  ���� 

shows the convex curvature with respect to AM and hence it is clear that  ���� is convex with respect 
to AM. 

Theorem 5.5: The Inverse Square Mean Root is Concave with respect to Geometric Mean,   
                         ∀ � ≤ � ≤ �. 

Proof:  Consider,  ����(� , �) = 
���

 �√�  � √� �
�    and  �(�, �) =  √�� 

If  � = � , � = 1  then  �(�) =  
��

 �√�  � � �
�  ,  �(�) = √� then by lemma 2.5,      

Δ = �

1 �(�) �(�)

1 �(�) �(�)

1 �(�) �(�)
� 

   = �

1     �(�)     �(�)

 0    �(�) − �(�)   �(�) − �(�)

 0 �(�) − �(�) �(�) − �(�)

� 

    =
�

�

1             
��

 �√�  � � �
�              √�       

 0         
��

 �√�  � � �
�  − 

��

 �√�  � � �
�         �√�� − �√��

  0                
��

 �√�  � � �
�  −  

��

 �√�  � � �
�             �√�� − �√��

�

�
 

     =

�

�

1     
��

 �√�  � � �
�                  √�        

 0            
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�         �√�� − �√��

  0               
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�            �√�� − �√��

�

�

 

0
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���� & AM   

 ^i SMR AM
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= 1 �
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
� � �√� −  √� � −  �

���√�  � � �
�

� ���√�  � � �
�

 �√�  � � �
�

�√�  � � �
� � �√� −  √� �  

= 
�

�
 �

(����)�√����

 �√�  � � �
�  – 

(����)�√����

 �√�  � � �
�  �  

=  − 
(√���)(√���)(√��√�)

(√���)(√���)
 < 0. 

 Hence the theorem. 

The graph below represents the convexity of  ���� with respect to GM    

 

                      Figure 5.2: Convexity of  ���� with respect to GM 

From the figure 5.2, the graph of GM lies above every chord (line segment) connecting any two points 

on the curve when those points are compared based on the corresponding values of  ����.  ���� shows 

concave curvature with respective to GM and hence it is clear that  ���� is concave with respect to 
GM. 

 

Theorem 5.6: The Inverse Square Mean Root is Convex with respect to Harmonic Mean,               
                         ∀ � ≤ � ≤ �. 

Proof:  Consider,  ����(� , �)= 
���

 �√�  � √� �
�    and  �(�, �) =

��� 

� � �
 

If  � = � , � = 1  then  �(�) =  
��

 �√�  � � �
�  ,  �(�) =

��  

� � �
  then by lemma 2.5,      

Δ = �

1 �(�) �(�)

1 �(�) �(�)

1 �(�) �(�)
� 

  = �

1     �(�)     �(�)

 0    �(�) − �(�)   �(�) − �(�)

 0 �(�) − �(�) �(�) − �(�)

� 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

���� & GM   

 ^i SMR GM
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   =
�

�

1               
��

 �√�  � � �
�           

��  

� � �

 0         
��

 �√�  � � �
�  −  

��

 �√�  � � �
�         

��  

� � �
− 

��  

� � �

  0               
��

 �√�  � � �
�  −  

��

 �√�  � � �
�             

��  

� � �
− 

��  

� � �

�

�
 

  =

�

�

1               
��

 �√�  � � �
�                            

��  

� � �
  

 0                
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�                              2(� − �)

  0                  
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�                              2(� − �)

�

�

 

= 2 �
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
� � (� − �) −  �

���√�  � � �
�

� ���√�  � � �
�

 �√�  � � �
�

�√�  � � �
� � (� − �)  

=
�

�
 �

(����)(� � �)

 �√�  � � �
�  – 

(�� � �)(� � �)

 �√�  � � �
�  � 

=  2(� − 1)(� − 1) �
�

 �√�  � � �
�  −  

�

 �√�  � � �
� � > 0. 

Hence the theorem. 

The graph below represents the convexity of  ���� with respect to HM. 

 

                   Figure 5.3: The convexity of  ���� with respect to HM 

From the figure 5.3, the graph of HM lies above every chord (line segment) connecting any two points 

on the curve when those points are compared based on the corresponding values of ����.  ���� shows 

convex curvature with respective to HM and hence it is clear that  ���� is convex with respect to HM.  

 

Theorem 5.7: The Inverse Square Mean Root is Concave with respect to Contra−Harmonic Mean,     

                         ∀ � ≤ � ≤ �. 

Proof:  Consider,  ����(� , �) = 
���

 �√�  � √� �
�    and  �(�, �) =

�� � ��

� � �
 

0
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If  � = � , � = 1  then  �(�) =  
��

 �√�  � � �
� ,  �(�) =

�� � �  

� � �
  then by lemma 2.5,      

Δ = �

1 �(�) �(�)

1 �(�) �(�)

1 �(�) �(�)
� 

  = �

1     �(�)     �(�)

 0    �(�) − �(�)   �(�) − �(�)

 0 �(�) − �(�) �(�) − �(�)

� 

   =
�

�

1              
��

 �√�  � � �
�          

�� � �  

� � �

 0         
��

 �√�  � � �
�  −  

��

 �√�  � � �
�         �

�� � �  

� � �
� −  �

�� � �  

� � �
�

  0               
��

 �√�  � � �
�  −  

��

 �√�  � � �
�            �

�� � �  

� � �
� −  �

�� � �  

� � �
�

�

�
 

  =

�

�

1              
��

 �√�  � � �
�          

�� � �  

� � �

 0          
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�         �

�� � �  

� � �
� − �

�� � �  

� � �
�

  0                 
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
�            �

�� � �  

� � �
� − �

�� � �  

� � �
�

�

�

 

 = �
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
� � � �

�� � �  

� � �
� − �

�� � �  

� � �
�� 

       − � 
���√�  � � �

�
� ���√�  � � �

�

 �√�  � � �
�

�√�  � � �
� � ��

�� � �  

� � �
� − �

�� � �  

� � �
�� < 0. 

Hence the theorem. 

The graph below represents the Convexity of  ���� with respect to CHM 

 

                    Figure 5.4: Convexity of  ���� with respect to CHM  

From the figure 5.4, the graph of CHM lies above every chord (line segment) connecting any two points 

on the curve when those points are compared based on the corresponding values of  ���� and shows 
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concave curvature with respective to CHM and hence it is clear that  ���� is concave with respect to 
CHM. 

Theorem 5.8: For  � , � > 0 ,  the  G – Complementary to Square mean root is Schur Convex. 

Proof: The G – Complementary to Square mean root is given by  ����(� , �) = 
���

�√�   �  √� �
�   

On differentiating partially with respect to � �nd �, 

 
  �( ����)

��
 = 

���  �  ��√�� 

�√�   �  √� �
�              and         

  �( ����)

��
 = 

���  �  ��√�� 

�√�   �  √� �
�           

 
  �( ����)

��
 −  

  �( ����)

��
 = �

���  �  ��√�� 

�√�   �  √� �
�  �  −  �

���  �  ��√�� 

�√�   �  √� �
�  � 

 (� – �) �
  �( ����)

��
−

  �( ����)

��
 � = (� – �) �� 

���  �  ��√�� 

�√�   �  √� �
�  � − � 

���  �  ��√�� 

�√�   �  √� �
�  �� > 0  

Hence the G – Complementary Square mean root is Schur Convex.  

Theorem 5.9: For  � , � > 0 ,  the  G – Complementary to Square mean root is Schur Geometric 
Convex. 

Proof:  The G – Complementary to Square mean root is given by  ����(� , �) = 
���

�√�   �  √� �
�                                                                      

On differentiating partially with respect to � �nd �, 

 
  �( ����)

��
 = 

���  �  ��√�� 

�√�   �  √� �
�              and         

  �( ����)

��
 = 

���  �  ��√�� 

�√�   �  √� �
�        

��
  �( ����)

��
− �

  �( ����)

��
� = � �

���  �  ��√�� 

�√�   �  √� �
� � – � �

���  �  ��√�� 

�√�   �  √� �
� � = �

��� (� � �) 

�√�   �  √� �
�� 

(��� – ���) ��
  �( ����)

��
− �

  �( ����)

��
 � = (��� – ���) ��

��� (� � �) 

�√�   �  √� �
��� ≥ 0, for all � , � > 0 

Hence the G – Complementary Square mean root is Schur Geometric Convex. 

Theorem 5.10: For  � , � > 0 ,  the  G – Complementary to Square mean root is Schur Harmonic 

Convex. 

Proof: The G – Complementary to Square mean root is given by  ����(� , �) =
���

�√�   �  √� �
�                                                                      

On differentiating partially with respect to � �nd �, 

 
  �( ����)

��
 = 

���  �  ��√�� 

�√�   �  √� �
�              and         

  �( ����)

��
 = 

���  �  ��√�� 

�√�   �  √� �
�     

���   �( ����)

��
− ��   �( ����)

��
 � = �� �

���  �  ��√�� 

�√�   �  √� �
� � – �� �

���  �  ��√�� 

�√�   �  √� �
� � = ��

�(��)
�
� (� � �)� 

�√�   �  √� �
� �� > 0  

Hence the G – Complementary Square mean root is Schur Harmonic Convex. 
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6.  Conclusion 

In this article, it is justified that the invariant square mean root denoted by  ���� is a mean. It is also 
established an inequality chain involving classical means. Also, verified standard convexity properties 

involving  ����.  
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