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Abstract

In this article, we give sufficient conditions for the Hamiltonian and graphical properties

of graphs in the terms of degree-distance index. The degree distance index of the graph

is defined as the S(G) =
∑

u,v∈V (G)(d(u) + d(v))dG(u, v) where d(u) is the degree of the

vertex in a graph and dG(u, v) is the distance between the vertices u and v in the graph

G.
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1 Introduction

In this paper, we are concerned with a topological invariant of a molecular graph called

the Degree distance index. Let G be a connected graph of order n and size m. Let V (G)

be the vertex set of G. We use dG(u, v) to denote the distance between vertices u and v

of the graph G, and d(u) is used to denote the degree of the vertex u of the graph. Let

Kn denote the complete graph on n vertices. Then the Degree distance index (or degree

distance) of G is defined as:

S(G) =
∑

u,v∈V (G)

(d(u) + d(v))dG(u, v) =
1

2

∑
u∈V (G)

∑
v∈V (G)

(d(u) + d(v))dG(u, v)

Dobrynin and Kochetova [10] and Gutman [11] independently studied the degree

distance sum of a graph. The same was studied by Tomescu [22], Tomescu [22] and

Bucicovschi and Cioab [7]. A related concept studied earlier for the chemical applications

called ” Molecular topological index ” MTI by H. P. Schultz in 1989 is defined as follows

[19]: Let G be a graph with labeled vertices v1, v2, ....., vn. Then

MTI(G) =
n∑

i=1

[v(A+D)]i

whereA andD are adjacency and distance matrices ofG and v = (d(v1), d(v2), ...., d(vn)).It

can be easily seen from [11] that MTI(G) = M1(G)+S(G), where M1(G) is first Zagrab

index and S(G) is degree distance index.

A connected graph is said to be traceable (or Hamiltonian) if it has a Hamiltonian

path (or cycle). A path (or cycle) is said to be a Hamiltonian path (or cycle) if it traverses

through all vertices exactly once. A graph is said to be Hamiltonian-connected if it has

a Hamiltonian path between every pair of vertices. A graph is said to be k- connected

if it remains connected by removing fewer than k vertices. A graph on n vertices is k-

edge Hamiltonian if every path of length not exceeding k, 1 ≤ k ≤ n − 2, is contained

in a Hamiltonian cycle. The graph G is called k-path coverable if V (G) can be covered

by k or fewer than k vertex disjoint paths, obviously 1-path coverable is traceable. For a
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graph G, if G[V X] is Hamiltonian for all |X| ≤ k, , we call G to be k-Hamiltonian. In

particular, 0-Hamiltonian is same as Hamiltonian. For other undefined graph-theoretic

notations and terminology, the reader may refer to [6].

The problem of finding a Hamiltonian cycle is NP-complete as reported in [14]. In

2013, Yang [23] studied the Hamiltonian path in terms of the Wiener index and extended

it to the Hamiltonian graph [18]. In the same year, Hua [12] discussed sufficient con-

ditions for traceability in terms of the Harary index. Further, sufficient conditions for

k-connected, β- deficient, and Hamiltonian cycle in terms of the first Zagreb index are

studied in [2]. Also, An [3] studied graph properties based on reciprocal degree distance

and An [1] discussed sufficient conditions for Hamiltonian-connectedness in terms of the

first Zagreb index and reciprocal distance. In [20], the author(s) described sufficient

conditions for k-edge Hamiltonian, k-path coverable, traceable, and Hamilton-connected

graphs in terms of the forgotten index. In [13], author(s) studied sufficient conditions for

Hamiltonicity with respect to the Wiener index, hyper-Wiener index, and Harary index.

The Hamiltonian and graphical properties in terms of the eccentricity-based topological

index are studied in [17,24].

In this article, we explore sufficient conditions for the Hamiltonian path, Hamiltonian

cycle, Hamiltonian-connected, and k-connected graphs in terms of the Degree distance

index. The paper is organized as follows: In Section 2, we give some useful propositions

which are needed in subsequent sections. In Section 3, we present the results and proofs

of this paper.

2 Preliminaries

In this section, we will introduce four-degree conditions. In the following propositions, we

suppose that the graph satisfies the degree sequence π = (d1 ≤ d2 ≤ .... ≤ dn) condition.

Proposition1. [9] Let G be a graph of order n ≥ 3 having degree sequence π. If

di ≤ i− 1 ≤ 1

2
(n− 1) ⇒ dn−i ≥ n− i− 1

then G is traceable.
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Proposition2. [9] Let G be a graph of order n ≥ 3 having degree sequence π. If

di ≤ i <
n

2
⇒ dn−i ≥ n− i

then G is Hamiltonian.

Proposition3. [8] Let G be a graph of order n ≥ 3 having degree sequence π. If

di−1 ≤ i ⇒ dn−i ≥ n− i+ 1, for2 ≤ i ≤ n

2

then G is Hamiltonian connected.

Proposition4. . [4] Let G be a graph of order n ≥ 4 having degree sequence π. If

di ≤ i+ k − 2 ⇒ dn−k+1 ≥ n− i, for1 ≤ i ≤ 1

2
(n− k + 1)

then G is k-connected.

Proposition 5. [15] Let G be a graph with degree sequence π and n ≥ 3 and

0 ≤ k ≤ n− 3. If

di−k ≤ i ⇒ dn−i ≥ n− i+ k, fork + 1 ≤ i ≤ n+ k

2

then π is k-edge Hamiltonian.

Proposition 6. [9] Let G be graph with degree sequence π and 0 ≤ k ≤ n− 3. If

di ≤ i+ k ⇒ dn−i−k ≥ n− i, for1 ≤ i ≤ 1

2
(n− k)

then G is k- Hamiltonian.

Proposition 7. [5, 16] If k ≥ 1 and the degree sequence π of G satisfies

di+k ≤ i → dn−i ≥ n− i− k, for1 ≤ i ≤ 1

2
(n− k)

then G is k-path coverable.

Define a graph G4as follows: A graph whose set of vertices has partition A
⋃

B
⋃
C
⋃

D

such that |A| = |C| = k and |B| = |D| = m−k and and whose edges connect each vertex

4
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u ∈ A
⋃
B to each vertex v ∈ C

⋃
D except when u ∈ A and v ∈ D.

Proposition8. [9]LetG be a bipartite graph with vertices (u1, u2, ....., un) and (v1, v2, ....., vn)

such that d(u1) ≤ d(u2) ≤ .... ≤ d(un) and d(v1) ≤ d(v2) ≤ .... ≤ d(vn) and

d(uk) ≤ k < n → d(vn−k) ≥ n− k + 1

Then G is either Hamiltonian or G4.

3 Degree distance index and Hamiltonicity

This section gives sufficient conditions for a graph to be traceable, Hamiltonian, Hamiltonian-

connected, k-connected graphs, k-path coverable, k-Hamiltonian,k-edge Hamiltonian in

terms of Degree distance index. Further, we give sufficient condition for bipartite graph

to be Hamiltonian in terms of Degree distance index.

Let G be a connected graph, and S(G) denotes the Degree distance index of G:For a

vertex v of G,define D(v) =
∑

u∈G dG(v, u) and D′(v) = d(v)D(v). Then

S(G) =
∑
v∈G

D′(v)

=
∑
v∈G

d(v)D(v)

≤
∑
v∈G

d(v)[d(v) + (n− 1− d(v))(n− 1− d(v))] (1)

= (n− 1)2
∑
v∈G

d(v)− (2n− 3)
∑
v∈G

(d(v))2 +
∑
v∈G

(d(v))3

We now have the following:
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Theorem 1. Let G be a connected graph of order n ≥ 5 and size m. If

S(G) ≥ 2n4 − 12n3 + 27n2 − 27n+ 10− (2n− 3)

n
4m2

then G is traceable.

Proof. Suppose that G is not traceable, then by Proposition 1 and Equation1, the Degree

distance index of G:

S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

d(v)

)2

≤ (n− 1)2[k(k − 1) + (n− 2k + 1)(n− k − 1) + (k − 1)(n− 1)]

+ [k(k − 1)3 + (n− 2k + 1)(n− k − 1)3 + (k − 1)(n− 1)3]
(2n− 3)

n
4m2

= (n− 1)2[3k2 − (2n+ 1)k + n2 − n] + [3k4 − (7n− 2)k3 + (9n2 − 12n+ 6)k2

− (4n3 − 4n2 + 3)k + n4 − 3n3 + 3n2 − n]− (2n− 3)

n
4m2

= 3k4 − (7n− 2)k3 + (12n2 − 18n+ 9)k2 − (6n3 − 9n2 + 4)k

+ 2n4 − 6n3 + 6n2 − 2n− (2n− 3)

n
4m2

= 2n4 − 12n3 + 27n2 − 27n+ 10− (2n− 3)

n
4m2

+ (k − 1)[3k3 − (7n− 5)k2 + (12n2 − 25n+ 14)k − 6n3 + 21n2 − 25n+ 10]

Combining with the condition of the Theorem 1, we know that (k−1)[3k3− (7n−5)k2+

(12n2−25n+14)k−6n3+21n2−25n+10] ≥ 0. Since G is connected and k ≥ dk+1 ≥ 2.

Let q(x) = 3x3 − (7n− 5)k2 + (12n2 − 25n+14)x− 6n3 +21n2 − 25n+10. Since k is an

integer we have 2 ≤ k ≤ n+1
2

is equivalent to k ≤ n
2
. So what follows we assume that k ≤ n

2

The first derivative of q(x) is q′(x) = 9x2 − 2(7n − 5)x + (12n2 − 25n + 14) and the

discriminant ∆of q′(x) = 0 is ∆ = 4(7n− 5)2 − 36(12n2 − 25n+14) = −4(59n2 − 155n+

101) < 0∀n ≥ 2. Therefore q′(x) > 0 and q(x) is strictly increasing in the interval of [2, n
2
]

. Hence max(q(x)) is obtained at the right endpoint of the interval [2, n
2
].We consider
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the parity of n. If n is even then

max(q(x)) = q(
n

2
) = −1

8
n(n(11n− 78) + 144) + 10 < 0,∀n ≥ 5.

If n is odd then

max(q(x)) = q(
n− 1

2
) = −1

8
(n− 1)(n(11n− 38) + 31) < 0,∀n ≥ 3.

Therefore max(q(x)) < 0∀n ≥ 5. Then S(G) ≤ 2n4−12n3+27n2−27n+10− (2n−3)
n

4m2.

Thus proof is coplete

Theorem 2. Let G be a connected graph of order n ≥ 12 and size m. If

S(G) ≥ 2n4 − 18n3 + 82n2 − 162n+ 136− (2n− 3)

n
4m2

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then by Proposition 2 and Equation 1, the

Degree distance index of G:

S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n
(
∑
v∈G

(d(v))2

≤ (n− 1)2[k2 + (n− 2k)(n− k − 1) + k(n− 1)]

+ [k4 + (n− 2k)(n− k − 1)3 + k(n− 1)3]
(2n− 3)

n
4m2

= (n− 1)2[3k2 − (2n− 1)k + n2 − n] + [3k4 − (7n− 6)k3 + (9n2 − 15n+ 6)k2

− (4n3 − 9n2 + 6n− 1)k + n4 − 3n3 + 3n2 − n]− (2n− 3)

n
4m2

= 3k4 − (7n− 6)k3 + (12n2 − 21n+ 9)k2 − (6n3 − 14n2 + 10n− 2)k

+ 2n4 − 6n3 + 6n2 − 2n− (2n− 3)

n
4m2

= 2n4 − 18n3 + 82n2 − 162n+ 136− (2n− 3)

n
4m2

+ (k − 2)[3k3 − (7n− 12)k2 + (12n2 − 35n+ 33)k − 6n3 + 38n2 − 80n+ 68]
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Combining with the condition of the Theorem 2, we know that (k−2)[3k3−(7n−12)k2+

(12n2 − 35n + 33)k − 6n3 + 38n2 − 80n + 68] ≥ 0. Since 2 ≤ k < n
2
is equivalent to

k ≤ 1
2
(n− 1). So what follows, we suppose k ≤ 1

2
(n− 1). Let q(x) = 3x3 − (7n− 12)x2 +

(12n2− 35n+33)x− 6n3+38n2− 80n+68 where 2 ≤ x ≤ 1
2
(n− 1). We divide the proof

into following two parts.

Case1:(k − 2)q(x) = 0, we have k = 2 or q(x) = 0, It is easy to see that q′(x) =

9x2 − 2(7n− 12)x+ (12n2 − 35n+ 33) and the discriminant ∆ of the equation q′(x) = 0

is ∆ = 4(7n−12)2−36(12n2−35n+33) = −4(59n2−147n+153) < 0∀n ≥ 1. Therefore

q′(x) > 0 and q(x) is strictly increasing in the interval 2 ≤ x < 1
2
(n−1). Then max(q(x))

is in the right endpoints of the domain of interval[2, 1
2
(n− 1)]. Since k is an integer, we

need to consider the parity of n. If n is even then max(q(x)) = q(1
2
(n− 2)). By a simple

calculation, we have

q(
1

2
(n− 2)) = −1

8
n(n− 4)(11n− 86) + 44 < 0,∀n ≥ 9

If n is odd, then max(q(x)) = q(1
2
(n− 1)). By a simple calculation, we have

q(
1

2
(n− 1)) =

1

8
[−11n3 + 159n2 − 421n+ 433] < 0,∀n ≥ 12

In both the cases q(x) < 0. From the above analysis, we can see that q(x) ̸= 0 for

2 ≤ x ≤ 1
2
(n− 1) and n ≥ 12. Hence we only need to consider the case k = 2. If k = 2

then S(G) ≤ 2n4 − 18n3 + 82n2 − 162n + 136 − (2n−3)
n

4m2. If equality holds then d1 =

d2 = 2, d3 = ... = dn−2 = n−3, dn−1 = dn = n−1, which implies G = K2∨ (2K1+Kn−4).

But in this case the equality
∑

v∈V (G) d(v)
2 = 1

n

(∑
v∈(V (G)) d(v)

)2

does not holds.

Case 2: (k−2)q(x) > 0. In this case k ≥ 3 and q(x) = 3x3− (7n−12)x2+(12n2−35n+

33)x − 6n3 + 38n2 − 80n + 68 > 0. By case 1, we know that q(x) is strictly increasing

and max(q(x)) < 0. Therefore for 3 ≤ x ≤ 1
2
(n−1), we have 3x3− (7n−12)x2+(12n2−

35n+ 33)x− 6n3 + 38n2 − 80n+ 68 < 0.A contradiction. Thus proof is complete.

Theorem 3. Let G be a connected graph of order n ≥ 13 and size m. If

S(G) ≥ 2n4 − 18n3 + 92n2 − 194n+ 204− (2n− 3)
4m2

n

8
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then G is Hamiltonian-connected.

Proof. Let G is non-Hamiltonian connected graph, then by Proposition 3 and Equation

1, the Degree distance index of G:

S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

(d(v)

)2

≤ (n− 1)2[k(k − 1) + (n− 2k + 1)(n− k) + k(n− 1)]− (2n− 3)
4m2

n

+ [k3(k − 1) + (n− 2k + 1)(n− k)3 + k(n− 1)3]

= 3k4 − (7n+ 2)k3 + (12n2 − 3n+ 3)k2 − (6n3 + 5n2 − 7n+ 4)k + 2n4 − n2 + n

− (2n− 3)
4m2

n

= 2n4 − 18n3 + 92n2 − 194n+ 204− (2n− 3)
4m2

n

+ (k − 3)[3k3 − (7n− 7)k2 + (12n2 − 24n+ 24)k − 6n3 + 31n2 − 65n+ 68]

According to the condition of the Theorem 3, we have (k − 3)[3k3 − (7n − 7)k2 +

(12n2 − 24n+ 24)k − 6n3 + 31n2 − 65n+ 68] ≥ 0. Note that k ≥ dk−1 ≥ δ(G) ≥ 3. Let

q(x) = 3x3 − (7n− 7)x2 + (12n2 − 24n+ 24)x− 6n3 + 31n2 − 65n+ 68 with 3 ≤ x ≤ n
2
.

We divide the proof into following two parts.

Case1:(k − 3)q(x) = 0, then k = 3 or q(x) = 0, The first derivative of q(x) is

q′(x) = 9x2 − 2(7n − 7)x + (12n2 − 24n + 24) and the discriminant ∆ of the equation

q′(x) = 0 is ∆ = 4[(7n− 7)2 − 9(12n2 − 24n+ 24) = −4(59n2 − 118n+ 167) < 0∀n ≥ 2.

Therefore q′(x) > 0 and q(x) is strictly increasing in the interval [3, π
2
]. Thenmax(q(x)) is

obtained in the right end point of the intervalmax(q(x)) = q(n
2
). By a simple calculation,

we have

q(
n

2
) = −1

8
n(n(11n− 166) + 424) + 68 < 0,∀n ≥ 13

When n is odd, then max(q(x)) = q(n−1
2
). By a simple calculation, we have

9
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q(
n− 1

2
) =

1

8
[−11n3 + 137n2 − 361n+ 459] < 0,∀n ≥ 10

In both the cases q(x) < 0∀n ≥ 13. By the above discussion, f(x) ̸= 0 for n ≥ 13. Hence

we need to consider the case k = 3.We have S(G) ≥ 2n4 − 18n3 + 92n2 − 194n + 204−

(2n − 3)4m
2

n
. and d1 = d2 = 3, d3 = ... = dn−3 = n − 3 and dn−1 = dn = n − 1. Hence

the graph is G = K3

∨
(2K1 + Kn−5). But in this case the equality

∑
v∈V (G) d(v)

2 =

1
n

(∑
v∈(V (G)) d(v)

)2

does not holds.

Case 2: k ≥ 4. We have 3k3−(7n−7)k2+(12n2−24n+24)k−6n3+31n2−65n+68 ≥ 0.

By case 1 we have 3k3 − (7n− 7)k2 + (12n2 − 24n+ 24)k − 6n3 + 31n2 − 65n+ 68 < 0

in the interval [3, π
2
].A contradiction. This completes the proof.

Theorem 4. Let G be a connected graph of order n, size m and 1 ≤ k ≤ n− 1. If

S(G) > k3 + 3k2 + (5n2 + 7n+ 12)k + 2n4 − 12n3 + 22n2 − 18n− (2n− 3)
4m2

n

then G is k-connected.

Proof. Let G is not k-connected graph, then by Proposition 4 and Equation 1, the Degree

distance index of G:

S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

(d(v)

)2

≤ (n− 1)2[i(i+ k − 2) + (n− i− k + 1)(n− i− 1) + (k − 1(n− 1))]− (2n− 3)
4m2

n

+ [i(i+ k − 2)3 + (n− i− k + 1)(n− i− 1)3 + (k − 1)(n− 1)3]

= 2i4 − (4n− 4k + 4)i3 + (3k2 − (3n+ 9)k + 8n2 − 10n+ 14)i2

+ (k3 − 6k2 + (5n2 + 10n+ 17)k − 6n3 + 8n2 − 2n− 12)i+ 2n4 − 6n3 + 6n2 − 2n

− (2n− 3)
4m2

n

Let q(x) = 2x4 − (4n− 4k + 4)x3 + (3k2 − (3n+ 9)k + 8n2 − 10n+ 14)x2 + (k3 − 6k2 +

10
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(5n2 + 10n+ 17)k − 6n3 + 8n2 − 2n− 12)x+ 2n4 − 6n3 + 6n2 − 2n with 1 ≤ x ≤ n−k+1
2

.

Then the first and second derivatives of q(x) are

q′(x) = 8x3 − 3(4n− 4k + 4)x2 + 2(3k2 − (3n+ 9)k + 8n2 − 10n+ 14)x

+ (k3 − 6k2 + (5n2 + 10n+ 17)k − 6n3 + 8n2 − 2n+ 12)

and

q”(x) = 24x2 − 6(4n− 4k + 4)x+ 2(3k2 − (3n+ 9)k + 8n2 − 10n+ 14)

the discriminant ∆ of the equation q”(x) = 0 is ∆ = 36(4n − 4k + 4)2 − 192(3k2 −

(3n + 9)k + 8n2 − 10n + 14) = 192(−5n2 − (3k − 16)n + 3k − 11) < 0, ∀n ≥ 2, and

1 ≤ k ≤ n− 1. Hence q”(x) > 0 and q(x) is convex function in the interval [1, n−k+1
2

] and

q(x) ∈ [q(1), q(n−k+1
2

)], By direct calculations we have

q(1) = k3 − 3k2 + (5n2 + 7n+ 12)k + 2n4 − 12n3 + 22n2 − 18n

and

q(
n− k + 1

2
) =

1

8
[−k4 − (2n− 10)k3 − (4n2 + 60n+ 40)k2 + (18n3 + 42n2 + 94n+ 54)k

+ 5n4 − 40n3 + 58n2 − 48n− 23]

Consider the difference

q(1)− q(n−k+1
2

) = 1
8
[k4 + (2n− 2)k3 + (4n2 + 60n+ 16)k2 − (18n3 + 2n2 + 38n− 42)k +

11n4 − 56n3 + 118n2 − 96n + 23]. Let r(x) = x4 + (2n − 2)x3 + (4n2 + 60n + 16)x2 −

(18n3 + 2n2 + 38n − 42)x + 11n4 − 56n3 + 118n2 − 96n + 23 with 1 ≤ x ≤ n − 1. The

first and second derivatives of r(x) are

11
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r′(x) = 4x3 + 3(2n− 2)x2 + 2(4n2 + 60n+ 16)x− (18n3 + 2n2 + 38n− 42)

and

r”(x) = 12x2 + 6(2n− 2)x+ 2(4n2 + 60n+ 16)

the discriminant ∆ of the equation is ∆ = 36(2n−2)2−96(4n2+60n+16) = −48(5n2+

126n + 29) < 0,∀n ≥ 1. Hence the function r(x) is convex in the interval of [1, n − 1].

By direct calculation, we have r(1) = (n − 2)(11n3 − 52n2 + 16n − 40) > 0,∀n ≥ 5

and r(n − 1) = 0. Therefore r(1) − r(n − 1) > 0,∀n ≥ 5.This implies that r(x) > 0

and hence q(1) − q(n−k+1
2

) > 0,∀n ≥ 5. We conclude that q(x) ≤ q(1) and S(G) ≤

k3 − 3k2 + (5n2 +7n+12)k+2n4 − 12n3 +22n2 − 18n− (2n− 3)4m
2

n
This completes the

proof.

Theorem 5. Let G be a connected graph of order n, size m and k be a positive integer

such that 0 ≤ k ≤ n− 3. If

S(G) > k3 + 13k2 + (5n2 − 13n+ 22)k + 2n4 − 12n3 + 32n2 − 40n+ 20− (2n− 3)
4m2

n

then G is k-edge Hamiltonian.

Proof. Suppose that G is not k-edge Hamiltonian then by Proposition 5 and Equation

1. the Degree distance index of G:

12
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S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

(d(v)

)2

≤ (n− 1)2[i(i− k) + (n− 2i+ k)(n− i+ k − 1) + i(n− 1)]

+ [(i− k)i3 + (n− 2i+ k)(n− i+ k − 1)3 + i(n− 1)3]− (2n− 3)
4m2

n

= 3i4 − (7n+ 8k − 6)i3 + (12n2 + 18nk + 9k2 − 15k − 21n+ 9)i2

+ (−5k3 − 19n2k − 6n3 − 15nk2 + 32nk + 14n2 + 12k2 − 3k − 10n+ 2)i+ 2n4 − 6n3 + 6n2

− 2n+ k4 + 4nk3 + 7n2k2 + 6n3k − 3k3 − 11nk2 − 14n2k + 4k2 + 10nk − 2k − (2n− 3)
4m2

n

Let q(x) = 3x4 − (7n+8k− 6)x3 + (12n2 +18nk+9k2 − 15k− 21n+9)x2 + (−5k3 −

19n2k− 6n3 − 15nk2 + 32nk+ 14n2 + 12k2 − 3k− 10n+ 2)x with k+ 1 ≤ x ≤ n+k
2
. The

first and second derivatives of q(x) are

q′(x) = 12x3 − 3(7n+ 8k − 6)x2 + 2(12n2 + 18nk + 9k2 − 15k − 21n+ 9)x

+ (−5k3 − 19n2k − 6n3 − 15nk2 + 32nk + 14n2 + 12k2 − 3k − 10n+ 2)

and

q”(x) = 36x2 − 6(7n+ 8k − 6)x+ 2(12n2 + 18nk + 9k2 − 15k − 21n+ 9)

the discriminant ∆ of the equation q”(x) = 0 is ∆ = 36[(7n+8k− 6)2− 8(12n2+18nk+

9k2−15k−21n+9)] = 36(−8k2−32nk−47n2+24k+84n−36) < 0 for n ≥ 2. Therefore

q”(x) > 0 in the interval [k + 1, n+k
2
] hence function is convex. q(x) ∈ [k + 1, n+k

2
] and

max(q(x)) ∈ [q(k + 1), q(n+k
2
)]. By simple calculation, we have

q(k + 1) = −(k + 1)(k3 + (4n− 5)k2 + (7n2 − 15n− 4)k + 6n3 − 26n2 + 38n− 20)

13
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q(
n+ k

2
) = − 1

16
(n+ k)(17k3 + (49n− 48)k2 + (67n2 − 136n− 12)k + 11n3 − 40n2 + 44n− 16)

Consider the difference

q(k + 1)− q(
n+ k

2
) = −(k + 1)(k3 + (4n− 5)k2 + (7n2 − 15n− 4)k + 6n3 − 26n2 + 38n− 20)

+
n+ k

2
(17k3 + (49n− 48)k2 + (67n2 − 136n− 12)k

+ 11n3 − 40n2 + 44n− 16)

=
1

2
[15k4 + (58n− 60)k3 + (102n2 − 162n+ 6)k2

+ (66n3 − 138n2 − 14n+ 32)k + 11n4 − 52n3 + 96n2 − 92n+ 20]

≥ 252k4 + 1100k3 + 1600k2 + 798k + 95(n ≥ k + 3)

> 0, fork ≥ 1

Hence q(k + 1)− q(n+k
2
) > 0, q(k + 1) ≥ q(n+k

2
).max(q(x)) = q(k + 1). Then S(G) ≤

−(k+1)(k3+(4n− 5)k2+(7n2− 15n− 4)k+6n3− 26n2+38n− 20)+2n4− 6n3+6n2−

2n + k4 + 4nk3 + 7n2k2 + 6n3k − 3k3 − 11nk2 − 14n2k + 4k2 + 10nk − 2k − (2n− 3) =

k3+13k2+(5n2− 13n+22)k+2n4− 12n3+32n2− 40n+20− (2n− 3)4m
2

n
. This proves

the theorem.

Theorem 6. Let G be a connected graph of order n, size m and k be a positive integer

such that 0 ≤ k ≤ n− 3. If

S(G) > k3 + 3k2 − (5n2 − 13n+ 12)k + 2n4 − 12n3 + 32n2 − 40n+ 20

then G is k-edge Hamiltonian.

Proof. Suppose that G is not k- Hamiltonian then by Proposition 6 and Equation 1. the

Degree distance index of G:

14
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S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

(d(v)

)2

≤ (n− 1)2[i(i+ k) + (n− 2i− k)(n− i− 1) + (i+ k)(n− 1)]

+ [i(i+ k)3 + (n− 2i− k)(n− i− 1)3 + (i+ k)(n− 1)3]− (2n− 3)
4m2

n

= 3i4 − (7n− 4k − 6)i3 + (12n2 − 3nk + 3k2 + 3k − 21n+ 9)i2

+ (k3 + 5n2k − 6n3 − 10nk + 14n2 + 5k − 10n+ 2)i+ 2n4

− 6n3 + 6n2 − 2n− (2n− 3)
4m2

n

Let q(x) = 3x4 − (7n− 4k − 6)x3 + (12n2 − 3nk + 3k2 + 3k − 21n+ 9)x2 + (k3 + 5n2k −

6n3 − 10nk + 14n2 + 5k − 10n+ 2)x+ 2n4 − 6n3 + 6n2 − 2n with 1 ≤ x ≤ n−k
2
. Since x

is an integer,we suppose 1 ≤ x ≤ n−k−1
2

The first and second derivatives of q(x) are

q′(x) = 12x3 − 3(7n− 4k − 6)x2 + 2(12n2 − 3nk + 3k2 + 3k − 21n+ 9)x

+ (k3 + 5n2k − 6n3 − 10nk + 14n2 + 5k − 10n+ 2)

and

q”(x) = 36x2 − 6(7n− 4k − 6)x+ 2(12n2 − 3nk + 3k2 + 3k − 21n+ 9)

the discriminant ∆ of the equation q”(x) = 0 is ∆ = 36[(7n− 4k− 6)2 − 8(12n2 − 3nk+

3k2+3k−21n+9)] = 36(−47k2−32nk+84n−8k2+24k−36) < 0 for 1 ≤ k ≤ n−3, n ≥ 1.

Therefore q”(x) > 0 for the interval [1, n−k−1
2

] and hence q(x) is convex function in the

interval [1, n−k−1
2

] and max(q(x)) ∈ [q(1), q(n−k−1
2

)]. By direct calculation, we have

q(1) = k3 + 3k2 − (5n2 − 13n+ 12)k + 2n4 − 12n3 + 32n2 − 40n+ 20

15
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and

q(
n− k − 1

2
) = − 1

16
(n− k − 1)[k3 + (n− 3)k2 + (n− 1)(3n− 7)k − (n− 1)2(21n− 11)]

consider the equation q(1) − q(n−k−1
2

) = 1
16
(k4 + (2n + 12)k3 + (4n2 − 14n + 58)k2 −

(18n3 +40n2 − 182n+188)k+11n4 − 118n3 +416n2 − 586n+309] > 0 This implies that

q(1) > q(n−k−1
2

) Hence max(q(x)) = q(1).S(G) ≤ k3 + 3k2 − (5n2 − 13n+ 12)k + 2n4 −

12n3 + 32n2 − 40n+ 20− (2n− 3)4m
2

n
. The proof is completed.

Theorem 7. Let G be a connected graph of order n, size m and k be a positive integer.

If

S(G) > k4 − (4n− 8)k3 + (7n2 − 26n+ 25)k2 − (6n3 − 33n2 + 60n− 38)k

+ 2n4 − 12n3 + 32n2 − 40n+ 20− (2n− 3)

n
4m2

then G is k-path Coverable.

Proof. Suppose that G is not k- path Coverable then by Proposition 7 and Equation 1.

the Degree distance index of G:

S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

(d(v)

)2

≤ (n− 1)2[i(i+ k) + (n− 2i− k)(n− i− k − 1) + i(n− 1)]

+ [(i+ k)i3 + (n− 2i− k)(n− i− k − 1)3 + i(n− 1)3]− (2n− 3)

n
4m2

= 3i4 − (8k − 7n+ 6)i3 + (9k2 − 18kn+ 12n2 + 15k − 21n+ 9)i2

+ (5k3 − 15nk2 + 19nk − 6n3 + 12k2 − 32kn+ 14n2 + 13k − 10n+ 2)i

+ k4 − (4n− 3)k3 + (7n2 − 11n+ 4)k2 − (6n3 − 14n2 + 10n− 2)k + 2n4

− 6n3 + 6n2 − 2n− (2n− 3)

n
4m2

Let q(x) = 3x4− (8k−7n+6)x3+(9k2−18kn+12n2+15k−21n+9)x2+(5k3−15nk2+

16
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19n2k − 6n3 + 12k2 − 32kn + 14n2 + 13k − 10n + 2)x with 1 ≤ x ≤ n−k−1
2

. Since x is

an integer,we want to calculate max(q(x)) in the interval [1, n−k−1
2

] The first and second

derivatives of q(x) are

q′(x) = 12x3 + 3(8k − 7n+ 6)x2 + 2(9k2 − 18kn+ 12n2 + 15k − 21n+ 9)x

+ (5k3 − 15nk2 + 19n2k − 6n3 + 12k2 − 32nk + 14n2 + 13k − 10n+ 2)

and

q”(x) = 36x2 + 6(8k − 7n+ 6)x+ 2(9k2 − 18nk + 12n2 + 15k − 21n+ 9)

the discriminant ∆ of the equation q”(x) = 0 is ∆ = 36[(8k− 7n+ 6)2 − 8(9k2 − 18kn+

12n2 + 15k − 21n + 9)] = −47n2 − 8k2 + 32kn − 24k + 84n − 36) < 0,∀n ≥ 1, k ≥ 1.

Therefore q”(x) > 0 hence q(x) is convex in the interval [1, q(n−k−1
2

)]. Hence max(q(x)) ∈

[q(1), q(n−k−1
2

)]. By simple calculation, we have

q(1) = 5k3 − 3(5n− 7)k2 + (19n2 − 50n+ 36)k − 6n3 + 26n2 − 38n+ 20

and

q(
n− k − 1

2
) =

1

16
(n− k − 1)[17k3 + (49n− 35)k2 + (n− 1)(67n− 39)k − 11n3

+ 32n2 + 11n− 11]

the difference equation

q(1)− q(
n− k − 1

2
) =

1

16
(17k3 − (66n− 132)k3 + (116n2 − 430n+ 410)k2

− (78n3 − 510n2 + 934n− 604)k + 11n4 − 140n3 + 438n2 − 586n+ 309]

≥ 3k3 + 2k2 + k + 2(n ≥ k + 1)

> 0,∀k ≥ 1

17
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Hence max(q(x)) = q(1) then S(G) ≤ k4 − (4n− 8)k3 + (7n2 − 26n+ 25)k2 − (6n3 −

33n2+60n−38)k+2n4−12n3+32n2−40n+20−4m2 (2n−3)
n

. The proof is completed.

Theorem 8. Let G be a bipartite graph of order 2n, size m and n ≥ 2. If

S(G) > 4(2n4 − 5n3 + 6n2 − 4n+ 1)− (2n− 3)

n
4m2

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then by Proposition 8 and Equation 1. the

Degree distance index of G:

S(G) ≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)
∑
v∈G

(d(v))2

≤ (n− 1)2
∑
v∈G

d(v) +
∑
v∈G

(d(v))3 − (2n− 3)

n

(∑
v∈G

(d(v)
)2

≤ (n− 1)2[ii+ (n− i)n+ (n− i)(n− i) + in]

+ [ii3 + (n− i)n3 + (n− i)(n− i)3 + in3]
(2n− 3)

n
4m2

= 2i4 − 4ni3 + (8n2 − 4n+ 2)i2 − (6n3 − 4n2 + 2n)i

+ 4n4 − 4n3 + 2n2 − (2n− 3)

n
4m2

Let q(x) = 2x4 − 4nx3 + (8n2 − 4n + 2)x2 − (6n3 − 4n2 + 2n) + 4n4 − 4n3 + 2n2 with

1 ≤ x ≤ n. Since x is an integer,we want to calculate max(q(x)) in the interval [1, n− 1]

The first and second derivatives of q(x) are

q′(x) = 8x3 − 12nx2 + 2(8n2 − 4n+ 2)x− (6n3 − 4n2 + 2n)

and

q”(x) = 24x2 − 24nx+ 2(8n3 − 4n+ 2)

the discriminant ∆ of the equation q”(x) = 0 is ∆ = 576n2 − 192(8n2 − 4n + 2) =

18

GIS SCIENCE JOURNAL ISSN NO : 1869-9391

VOLUME 12, ISSUE 5, 2025 PAGE NO: 410



−192(5n2− 4n+2) < 0,∀n ≥ 2. Therefore q”(x) > 0 hence q(x) is convex in the interval

[1, n− 1]. max(q(x)) ∈ [q(1), q(n− 1)]. By simple calculation, we have

q(1) = 4(2n4 − 5n3 + 6n2 − 4n+ 1)

and

q(n− 1) = 4(2n4 − 5n3 + 6n2 − 4n+ 1)

the difference equation q(1)− q(n− 1) = max(q(x))in [1, n− 1]. We have max(q(x)) =

q(1). Therefore, S(G) ≤ 4(2n4 − 5n3 + 6n2 − 4n+ 1)− 4m2

n
. The theorem is proved.
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