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Abstract

In this article, we give sufficient conditions for the Hamiltonian and graphical properties
of graphs in the terms of degree-distance index. The degree distance index of the graph
is defined as the S(G) = >_, cy(q)(d(u) + d(v))de(u, v) where d(u) is the degree of the
vertex in a graph and dg(u,v) is the distance between the vertices u and v in the graph

G.
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1 Introduction

In this paper, we are concerned with a topological invariant of a molecular graph called
the Degree distance index. Let G be a connected graph of order n and size m. Let V(G)
be the vertex set of G. We use dg(u,v) to denote the distance between vertices u and v
of the graph G, and d(u) is used to denote the degree of the vertex u of the graph. Let
K, denote the complete graph on n vertices. Then the Degree distance index (or degree

distance) of G is defined as:

S(G) = Y (dw)+d(v))de(u,v) Z > v))de(u,v)
uweV(G) uEV(G) veV(G)

Dobrynin and Kochetova [10] and Gutman [11] independently studied the degree
distance sum of a graph. The same was studied by Tomescu [22], Tomescu [22] and
Bucicovschi and Cioab [7]. A related concept studied earlier for the chemical applications
called 7 Molecular topological index ” MTI by H. P. Schultz in 1989 is defined as follows
[19]: Let G be a graph with labeled vertices vy, vy, ....., v,. Then

n

MTI(G) =) [v(A+D)];
i=1
where A and D are adjacency and distance matrices of G and v = (d(vy), d(v2), ..., d(v,,)).It
can be easily seen from [11] that MTI(G) = M;(G)+ S(G), where M;(G) is first Zagrab
index and S(G) is degree distance index.

A connected graph is said to be traceable (or Hamiltonian) if it has a Hamiltonian
path (or cycle). A path (or cycle) is said to be a Hamiltonian path (or cycle) if it traverses
through all vertices exactly once. A graph is said to be Hamiltonian-connected if it has
a Hamiltonian path between every pair of vertices. A graph is said to be k- connected
if it remains connected by removing fewer than k vertices. A graph on n vertices is k-
edge Hamiltonian if every path of length not exceeding k£, 1 < k < n — 2, is contained
in a Hamiltonian cycle. The graph G is called k-path coverable if V(G) can be covered

by k or fewer than k vertex disjoint paths, obviously 1-path coverable is traceable. For a
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graph G, if G|V X] is Hamiltonian for all |X| < k, , we call G to be k-Hamiltonian. In
particular, O-Hamiltonian is same as Hamiltonian. For other undefined graph-theoretic
notations and terminology, the reader may refer to [6].

The problem of finding a Hamiltonian cycle is NP-complete as reported in [14]. In
2013, Yang [23] studied the Hamiltonian path in terms of the Wiener index and extended
it to the Hamiltonian graph [18]. In the same year, Hua [12] discussed sufficient con-
ditions for traceability in terms of the Harary index. Further, sufficient conditions for
k-connected, - deficient, and Hamiltonian cycle in terms of the first Zagreb index are
studied in [2]. Also, An [3] studied graph properties based on reciprocal degree distance
and An [1] discussed sufficient conditions for Hamiltonian-connectedness in terms of the
first Zagreb index and reciprocal distance. In [20], the author(s) described sufficient
conditions for k-edge Hamiltonian, k-path coverable, traceable, and Hamilton-connected
graphs in terms of the forgotten index. In [13], author(s) studied sufficient conditions for
Hamiltonicity with respect to the Wiener index, hyper-Wiener index, and Harary index.
The Hamiltonian and graphical properties in terms of the eccentricity-based topological
index are studied in [17,24].

In this article, we explore sufficient conditions for the Hamiltonian path, Hamiltonian
cycle, Hamiltonian-connected, and k-connected graphs in terms of the Degree distance
index. The paper is organized as follows: In Section 2, we give some useful propositions
which are needed in subsequent sections. In Section 3, we present the results and proofs

of this paper.

2 Preliminaries

In this section, we will introduce four-degree conditions. In the following propositions, we
suppose that the graph satisfies the degree sequence 7 = (d; < dy < .... < d,,) condition.

Propositionl. [9] Let G be a graph of order n > 3 having degree sequence 7. If
. 1 :
di§2—1§§(n—1):>dn,i2n—z—1

then G is traceable.
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Proposition2. [9] Let G be a graph of order n > 3 having degree sequence 7. If
. n .
di§2<§:>dn,izn—z

then G is Hamiltonian.

Proposition3. [8] Let G be a graph of order n > 3 having degree sequence 7. If

dz_lSlidn_zzn—Z—Fl,fOTQSZS

|3

then G is Hamiltonian connected.

Proposition4. . [4] Let G be a graph of order n > 4 having degree sequence . If

—_

d <i+k—2=d, g1 >n—1 forl <i< §(n—k—|—1)
then (G is k-connected.
Proposition 5. [15] Let G be a graph with degree sequence 7 and n > 3 and
0<k<n-3.1If

k
diwn<i=d, ;>n—i+k fork+1<:i< %
then 7 is k-edge Hamiltonian.

Proposition 6. [9] Let G be graph with degree sequence 7 and 0 < k <n — 3. If

1
di<i+k=d, , r>n—1i forl <i< §(n—k‘)
then G is k- Hamiltonian.

Proposition 7. [5,16] If £ > 1 and the degree sequence 7 of G satisfies

1
then G is k-path coverable.
Define a graph Gjas follows: A graph whose set of vertices has partition A|J BJC|J D

such that |A| = |C| = k and |B| = |D| = m—k and and whose edges connect each vertex
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u € AlJ B to each vertex v € C'|J D except when u € A and v € D.
Proposition8. [9]Let G be a bipartite graph with vertices (u1, usg, ....., u,,) and (vy, va, ....., V)

such that d(u;) < d(ug) < ... < d(u,) and d(vy) < d(vq) < .... < d(v,) and

dug) <k <n—d,—) >n—k+1

Then G is either Hamiltonian or Gjy.

3 Degree distance index and Hamiltonicity

This section gives sufficient conditions for a graph to be traceable, Hamiltonian, Hamiltonian-
connected, k-connected graphs, k-path coverable, k-Hamiltonian,k-edge Hamiltonian in
terms of Degree distance index. Further, we give sufficient condition for bipartite graph
to be Hamiltonian in terms of Degree distance index.

Let G be a connected graph, and S(G) denotes the Degree distance index of G:For a
vertex v of G,define D(v) = > _~dg(v,u) and D'(v) = d(v)D(v). Then

ueG

S(G) = ) D'(v)

veG

= ) d(v)D(v)

veG

= (n—=1)*) dv)—(2n—3) Y (d©))+) (d(v))’

veG veG veG

We now have the following:
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Theorem 1. Let G be a connected graph of order n > 5 and size m. If

(2n — 3)

2

S(G) > 2n* —12n* +27n* — 27n + 10 — 4m

then G is traceable.

Proof. Suppose that G is not traceable, then by Proposition 1 and Equationl, the Degree

distance index of G:

S(G) < (n=1)*) d() + ) (d(v))’ —(2n—3) ) (d(v))’

veG veG veG
2 5 (2n-3) ?
< (n=1)) dw) + ) (W)’ - B > d)
veG veEG veEG
< n=1k(k—1D4+n—-2k+1)(n—k—1)+ (k—1)(n—1)]
o2n —
+ (k=13 +n—-2k+1)n—k—17°+(k—-1)(n— 1)%%%2
= (n—1%3k* - 2n+ Dk +n? —n] + [3k* — (Tn — 2)k* + (9n* — 12n + 6)k?
— (4n® —4n® + 3)k +n* — 30 + 3n* —n] — MélmZ
n
= 3k*— (Tn — 2)k* + (12n* — 18n + 9)k* — (6n® — In* + 4)k
+ 2n* —6n+6n%—2n — MZLWLQ
n
= 2% —12n® 4+ 27n% — 27n 4+ 10 — 2n=3) .,

+ (k—1)[3K* — (Tn — 5)k* + (12n* — 251 + 14)k — 6n° + 21n* — 250 + 10]

Combining with the condition of the Theorem 1, we know that (k—1)[3k® — (7n —5)k* +
(12n* —25n+14)k — 6n>+21n* — 251+ 10] > 0. Since G is connected and k > dy +1 > 2.
Let ¢(z) = 32® — (Tn — 5)k* + (12n? — 25n + 14)x — 6n® + 21n? — 25n 4 10. Since k is an
integer we have 2 < k < ”T“ is equivalent to k£ < % So what follows we assume that £ < %

The first derivative of q(x) is ¢/(z) = 922 — 2(Tn — 5)x + (12n* — 25n + 14) and the
discriminant Aof ¢/(z) = 01is A = 4(7n —5)? — 36(12n% — 25n + 14) = —4(59n? — 155n +
101) < 0¥n > 2. Therefore ¢'(z) > 0 and g(x) is strictly increasing in the interval of [2, F]

. Hence max(q(x)) is obtained at the right endpoint of the interval [2, £].We consider
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the parity of n. If n is even then

1
) = —gnln(1ln —78) + 144) + 10 < 0,Vn > 5.

—1 1
n ) = —5(n—D(n(lln —38) +31) <0,¥n > 3.

maz(q(r)) = q(

Therefore maz(g(x)) < 0¥n > 5. Then S(G) < 2n* —12n3+27n% — 270+ 10— EBym?,

Thus proof is coplete O
Theorem 2. Let G be a connected graph of order n > 12 and size m. If

(2n — 3)

n

2

S(G) > 2n* —18n® +82n* — 162n + 136 — 4m

then G is Hamiltonian.

Proof. Suppose that GG is not Hamiltonian, then by Proposition 2 and Equation 1, the

Degree distance index of G:

S(G) < (n=1*) d(v) + ) (dv))’ —(2n—3)) (d(v))

veG veG veEG
2 5 (2n-3) 2
< (=17 dv)+ ) (d©v)* - T(Z(d(v))
veG veEG vEG
< m—12K+(n—-28)n—k—1)+k(n—1)]
on — 3
R 4 (n—2k)(n—k— 1)+ k(n — 1)3]%47712
= (n—1)%3k* - (2n — Dk +n® —n] + [3k* — (Tn — 6)k> + (9n* — 15n + 6)k>
2 _
— (4n* —9n* +6n — Dk +n* —3n +3n* —n] — M4m2
n
= 3k* — (Tn — 6)k™ + (12n* — 21n + 9)k* — (6n° — 14n? + 10n — 2)k
o —
+ 20t —6n®4+6n%—2n — M4m2
n
on —
_ ont— 1807 4 8202 — 1620 + 136 — 2 g2
n

+ (k—2)[3k* — (Tn — 12)k* + (12n* — 35n + 33)k — 6n° + 38n* — 80n + 68]
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Combining with the condition of the Theorem 2, we know that (k—2)[3k®— (Tn—12)k*+
(12n* — 35n + 33)k — 6n® 4 38n* — 80n + 68] > 0. Since 2 < k < Z is equivalent to
k < 3(n—1). So what follows, we suppose k < (n—1). Let ¢(z) = 3z% — (Tn — 12)2? +
(12n? — 35n 4 33)x — 6n° + 38n* — 80n + 68 where 2 < 2 < 3(n—1). We divide the proof
into following two parts.

Casel:(k — 2)q(z) = 0, we have k = 2 or g(z) = 0, It is easy to see that ¢'(z) =
922 — 2(7Tn — 12)z + (12n% — 35n + 33) and the discriminant A of the equation ¢/(z) = 0
is A = 4(7n—12)? — 36(12n2 — 35n +33) = —4(59n? — 147n +153) < 0¥n > 1. Therefore
¢ (z) > 0 and q(x) is strictly increasing in the interval 2 < 2 < £(n—1). Then max(q(x))
is in the right endpoints of the domain of interval|2, %(n —1)]. Since k is an integer, we
need to consider the parity of n. If n is even then maz(q(z)) = ¢(3(n —2)). By a simple
calculation, we have

1 1
q(§(n —2)) = —gn(n —4)(11n — 86) +44 < 0,Vn > 9

If n is odd, then maz(g(x)) = ¢(3(n — 1)). By a simple calculation, we have

1 1
q(§(n —1)) = g[—lln?’ + 159n? — 421n + 433] < 0,Vn > 12

In both the cases ¢(z) < 0. From the above analysis, we can see that g(z) # 0 for
2< < %(n — 1) and n > 12. Hence we only need to consider the case k = 2. If k = 2
then S(G) < 2n* — 18n® + 82n% — 162n + 136 — Z=24m?2. If equality holds then d; =
dy=2,d3=..=d, o=n—3,d,_1 =d, =n—1, which implies G2: KoV (2K 1+ K, _y).

n

Case 2: (k—2)q(x) > 0. In this case k > 3 and q(x) = 323 — (Tn—12)2? + (12n* — 35n +

But in this case the equality > v d(v)? =1 ( > vev(cy @v) | does not holds.

33)x — 6n3 + 38n? — 80n + 68 > 0. By case 1, we know that ¢(z) is strictly increasing
and maz(q(z)) < 0. Therefore for 3 < z < 1(n—1), we have 32% — (7Tn — 12)2? + (12n* —
35n + 33)x — 6n3 + 38n% — 80n + 68 < 0.A contradiction. Thus proof is complete. m

Theorem 3. Let G be a connected graph of order n > 13 and size m. If

4 2
S(G) > 2n* —18n® + 920 — 194n + 204 — (2n — 3)——
n
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then G is Hamiltonian-connected.

Proof. Let G is non-Hamiltonian connected graph, then by Proposition 3 and Equation

1, the Degree distance index of G:

S(G) < (n=1)*) d() + ) (dv))’ —(2n—3)) (d(v))

< - )P+ Yoy - F 2 ()
< (n—=1%k(k—1)+n—-2k+1)(n—k)+k(n—1)] - (2n — 3)4—:’;2

+ k-1 +n-2k+1)(n—-k)?+Ekn-1)7°
= 3k*— (Tn+2)k* + (12n* — 3n 4+ 3)k* — (6n® +5n® — Tn + )k +2n* —n* +n
4m?

— (9 — 3
(2m —3) 22
4 3 2 4m?
= 2n° —18n° 4+ 92n° — 194n + 204 — (2n — 3)—
n

+ (k—3)[3K* — (Tn — T)k* + (12n® — 24n + 24)k — 6n° + 31n* — 65n + 68|

According to the condition of the Theorem 3, we have (k — 3)[3k% — (Tn — 7)k* +
(12n2 — 24n + 24)k — 6n® + 31n% — 65n + 68] > 0. Note that k > d,_; > 6(G) > 3. Let
q(z) = 3% — (Tn — T)a® + (12n® — 24n + 24)x — 6n° + 31n® — 65n + 68 with 3 <z < 2.

We divide the proof into following two parts.

Casel:(k — 3)q(x) = 0, then k& = 3 or ¢(x) = 0, The first derivative of ¢(x) is
¢ (z) = 9% — 2(Tn — 7)z + (12n* — 24n + 24) and the discriminant A of the equation
¢ (x) =01is A =4[(Tn — 7)% — 9(12n? — 24n + 24) = —4(59n? — 118n + 167) < 0Vn > 2.
Therefore ¢'(x) > 0 and q(x) is strictly increasing in the interval [3, 7]. Then max(q(x)) is
obtained in the right end point of the interval maz(q(z)) = q(%). By a simple calculation,

we have

1
q(g) — —Sn(n(11n — 166) + 424) + 68 < 0,Vn > 13

When n is odd, then maz(g(x)) = ¢(*5*). By a simple calculation, we have
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n—1
2

1
q( ) = gl=11n" +137n" — 361n + 459] < 0,Vn > 10

In both the cases ¢(x) < 0¥n > 13. By the above discussion, f(z) # 0 for n > 13. Hence
we need to consider the case k = 3.We have S(G) > 2n* — 18n® + 92n? — 194n + 204 —
(2n — 3)#. and dy =dy =3,d3 =...=d,_3=n—3and d,_1 = d, = n — 1. Hence

the graph is G = K3V/(2K; + K,—5). But in this case the equality }° .y q) d(v)? =
2

%(Zve(V(G)) d(v)) does not holds.
Case 2: k > 4. We have 3k3 — (Tn—T7)k2+ (12n2 — 24n+24)k — 6n3+31n% — 65n-+68 > 0.

By case 1 we have 3k — (Tn — 7)k* + (12n* — 24n + 24)k — 6n> + 31n? — 65n + 68 < 0

in the interval [3, 7].A contradiction. This completes the proof.

Theorem 4. Let G be a connected graph of order n, size m and 1 < k <n—1. If

4 2
S(G) > KB+ 3K+ (5n® + Tn + 12)k + 2n* — 12n® + 2202 — 18n — (2n — 3)——
n

then GG is k-connected.

Proof. Let G is not k-connected graph, then by Proposition 4 and Equation 1, the Degree

distance index of G

S(G) < (n=1°) dv)+) ()’ —(2n=3)) (d(v))*

veG veG veG
< -0+ Yoy - Z =2 ()
veEG veG veG
< (n—1)2[i(i+k—2)+(n—i—k5+1)(n—z’—1)+(k—l(n—l))]—(2n—3)4%

+ Jii+k—2P4+Mm—i—k+1)(n—i—17°+(k—-1)(n—1)%

= 2i* — (4n — 4k +4)8® + (3k* — (3n + 9)k + 8n? — 10n + 14)4*

+  (k* — 6k* 4 (5n* 4+ 10n + 17)k — 6n® + 8n? — 2n — 12)i + 2n* — 6n°® 4 6n* — 2n
4m?

- (2n— 3>T

Let q(z) = 22% — (4n — 4k + 4)23 + (3k* — (3n + 9)k + 8n? — 10n + 14)2? + (k* — 6k* +
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(5n? +10n + 17)k — 6n® + 8n* — 2n — 12)x + 2n? — 6n® + 6n* — 2n with 1 < z < ”’T’““

Then the first and second derivatives of ¢(x) are

¢ () = 82 —3(4n — 4k +4)2* +2(3k*> — (3n + 9)k + 8n* — 10n + 14)x

+ (K* — 6k* + (5n* + 10n + 17)k — 6n° + 8n® — 2n + 12)

and

q (v) = 242 —6(4n — 4k + 4)z + 2(3k* — (3n + 9)k + 8n? — 10n + 14)

the discriminant A of the equation ¢ (x) = 0 is A = 36(4n — 4k + 4)? — 192(3k* —
(3n + 9)k + 8n* — 10n + 14) = 192(—5n* — (3k — 16)n + 3k — 11) < 0,Yn > 2, and
1 <k <n-—1. Hence ¢ () > 0 and g(z) is convex function in the interval [1, "‘Tk*l] and

q(z) € [q(1), ¢(*=%+1)], By direct calculations we have

q(1) = K —=3k*+ (5n* + Tn+ 12)k + 2n* — 12n° + 22n° — 18n

and

k41 !
DTREF L L S[2K" = (20 = 10K = (4n? + 60n + 40)K® + (18n° + 420% + 94n + 54)k

+ 5n* —40n® + 58n% — 48n — 23]

Consider the difference

q(1) — q(=+1) = L[k* + (2n — 2)k* + (4n? + 60n + 16)k? — (18n® + 2n% + 38n — 42)k +
11n* — 56n3 + 118n? — 96n + 23]. Let r(x) = z* + (2n — 2)2® + (4n® + 60n + 16)z* —
(18n3 + 2n? + 38n — 42)z + 11n* — 5613 + 118n* — 96n + 23 with 1 < x < n — 1. The

first and second derivatives of r(x) are
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r(z) = 42° +3(2n — 2)2° + 2(4n® + 60n + 16)z — (18n° + 2n° + 38n — 42)
and
r(z) = 122% +6(2n — 2)x + 2(4n” + 60n + 16)

the discriminant A of the equation is A = 36(2n —2)? — 96(4n? + 60n + 16) = —48(5n* +
126n + 29) < 0,¥n > 1. Hence the function r(z) is convex in the interval of [1,n — 1].
By direct calculation, we have r(1) = (n — 2)(11n® — 52n? + 16n — 40) > 0,Vn > 5
and r(n — 1) = 0. Therefore r(1) — r(n — 1) > 0,V¥n > 5.This implies that r(z) > 0
and hence ¢(1) — ¢(%=5*) > 0,Vn > 5. We conclude that g(z) < ¢(1) and S(G) <
k3 — 3k + (5n% 4+ Tn + 12)k + 2n* — 12n% + 220 — 18n — (2n — 3) ™ This completes the

proof.

Theorem 5. Let GG be a connected graph of order n, size m and k be a positive integer

such that 0 <k <n-3. If

4 2
S(G) > K+ 13k% + (5n2 — 13n + 22)k + 2n* — 120° + 32n% — 40n + 20 — (20 — 3)——
n

then G is k-edge Hamiltonian.

Proof. Suppose that GG is not k-edge Hamiltonian then by Proposition 5 and Equation
1. the Degree distance index of G:
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S(G) < (n=1)*) d(v)+ ) (dv))’ —(2n—3)) (d(v))

veG veG veG
DO HUOHEE O WO)
veG veG veEG
< (=1 —k) +(n—2i+k)(n—i+k—1)+i(n—1)
+ [(i—k)yiP+n—2i+k)(n—i+k—1)7°+in—1)" —(%—3)?

= 3i* — (Tn + 8k — 6)i® + (12n? + 18nk + 9k* — 15k — 21n + 9)i*
4+ (=5K* —19n%k — 6n® — 15nk? + 32nk + 14n* + 12k* — 3k — 10n + 2)i + 2n* — 6n° + 6n?
4m?

— 2n+ k' 4+ 4nk?® + Tn?k? + 60k — 3k — 11nk* — 14n%k + 4k + 10nk — 2k — (2n — 3)—
n

Let ¢(z) = 32* — (Tn + 8k — 6)2® + (12n* + 18nk + 9k* — 15k — 21n + 9)x® + (—5k3 —
1902k — 6n® — 15nk? + 32nk + 14n? + 12k% — 3k — 10n + 2)z with k+ 1 < 2 < "% The

first and second derivatives of ¢(z) are

¢ () = 122° —3(Tn + 8k — 6)2® + 2(12n* + 18nk + 9k* — 15k — 21n + 9)x

+ (=5k* — 190’k — 6n° — 15mk? + 32nk + 14n® + 12k* — 3k — 10n + 2)

and

q (r) = 362% —6(Tn + 8k — 6)x + 2(12n* + 18nk + 9k* — 15k — 21n + 9)

the discriminant A of the equation ¢ (z) = 0is A = 36[(7n + 8k — 6)> — 8(12n? + 18nk +
9k% — 15k —21n+9)] = 36(—8k* —32nk —47n?+ 24k +84n —36) < 0 for n > 2. Therefore

¢ (z) > 0 in the interval [k + 1, ] hence function is convex. g(z) € [k + 1, 2] and

maz(q(z)) € [g(k + 1), q(*:*)]. By simple calculation, we have

qk+1) = —(k+1)(k*+ (4n — 5)k* + (Tn® — 15n — 4)k + 6n° — 26n” + 38n — 20)
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k 1
q(”; ) = —1—6(n + E)(17k3 + (49n — 48)k? + (67n? — 136n — 12)k + 11n® — 40n? + 44n — 16)

Consider the difference

n+k

qk+1) —q( 5 ) = —(k+1)(K*+ (4n — 5)k* + (Tn® — 15n — 4)k + 6n® — 26n% + 38n — 20)
T k(l?k:?’ + (49n — 48)k* + (67n* — 136n — 12)k
+ 11n® — 40n? + 44n — 16)
= %[15)/{4 + (58n — 60)k* + (102n? — 162n + 6)k*
+ (66n* — 138n% — 14n + 32)k + 11n* — 52n° + 961 — 92n + 20]
> 252k* 4+ 1100k 4 1600k? + 798k + 95(n > k + 3)
> 0, fork>1

Hence q(k + 1) — q(2£%) > 0,q(k + 1) > q(*F%).maz(q(x)) = q(k + 1). Then S(G) <
—(k+1)(E® + (4n — 5)k2 + (Tn? — 15n — 4)k + 6n® — 26n% + 38n — 20) + 2n* — 61 + 6n% —
2n + k* + 4nk? + Tn?k? + 6n3k — 3k% — 11nk? — 14n%k + 4k* 4+ 10nk — 2k — (2n — 3) =
K+ 13K% + (50 — 13n 4 22)k +2n* — 12n% + 320 — 40n 420 — (2n — 3)22. This proves
the theorem. O

Theorem 6. Let GG be a connected graph of order n, size m and k be a positive integer

such that 0 <k <n-—-3. If
S(G) > K4 3k* — (5n* — 13n + 12)k + 2n* — 12n® 4 3202 — 40n + 20

then G is k-edge Hamiltonian.

Proof. Suppose that G is not k- Hamiltonian then by Proposition 6 and Equation 1. the

Degree distance index of G-
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S(G) < (n=1)*) d(®)+ ) (dv))’ —(2n—3)) (d(v))

veG veEG veEG
D ICED HUONEE O WTO)
veG veG veG
< (n=1%ili+k)+(n—2i—k)(n—i—1)+ (i +k)(n—1)]

+ i +k)P4+n—2—k)(n—i—1>%+ (G +Ek)(n—1) —(%—3)?

= 3i* — (Tn — 4k — 6)i® + (12n* — 3nk + 3k* + 3k — 21n + 9)i*
+ (K + 50k — 6n® — 10nk + 14n* 4+ 5k — 10n + 2)i + 2n*
4m?

— 60 +6n*—2n— (2n — 3)—
n

Let q(z) = 32 — (Tn — 4k — 6)x3 + (12n? — 3nk + 3k? + 3k — 21n + 9)z* + (k* + 5n’k —
6n — 10nk + 14n® 4+ 5k — 10n + 2)x + 2n* — 6n3 + 60> — 2n with 1 < x < "T_k Since z

is an integer,we suppose 1 < x < "’T’H The first and second derivatives of g(x) are

¢ (x) = 122° —3(Tn — 4k — 6)2”® + 2(12n* — 3nk + 3k* + 3k — 21n + 9)x

+ (K +5n*k — 6n° — 10nk + 14n* + 5k — 10n + 2)

and

q (r) = 3622 —6(7Tn — 4k — 6)x + 2(12n? — 3nk + 3k* + 3k — 21n + 9)

the discriminant A of the equation ¢ (z) = 0is A = 36[(7n — 4k — 6)? — 8(12n* — 3nk +
3k2 13k —21n+9)] = 36(—47k>—32nk+84n—8k?+24k—36) < 0for 1 < k <n—3,n > 1.

n—k—1
2

Therefore ¢ (x) > 0 for the interval [1, ] and hence ¢(z) is convex function in the

interval [1, 2=2=1] and maz(q(z)) € [q(1), ¢(*=2=1)]. By direct calculation, we have

q(1) = K +3k*— (5n® — 13n + 12)k + 2n* — 12n° + 32n> — 40n + 20
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n—k—1 1

) = —E(n—k—1)[k3+(n—3)k2—|—(n—1)(3n—7)k—(n—1)2(21n—11)]

consider the equation g(1) — ¢(®=%=1) = =(k* + (2n + 12)k* + (4n® — 14n + 58)k* —
(18n? +40n? — 182n + 188)k + 11n* — 118n® + 416n? — 5861 4 309] > 0 This implies that
q(1) > q(®=%=1) Hence maz(q(z)) = ¢(1).5(G) < k + 3k* — (5n® — 13n + 12)k + 2n* —

12n3 + 32n? — 40n + 20 — (2n — 3)%. The proof is completed. O

Theorem 7. Let G be a connected graph of order n, size m and k be a positive integer.

If

S(G) > k' — (4n — 8)K® + (Tn® — 26n + 25)k* — (6n° — 33n* + 60n — 38)k
(2n — 3)
n

2

+ 2n* —12n3 + 32n% — 40n + 20 — Am

then GG is k-path Coverable.

Proof. Suppose that G is not k- path Coverable then by Proposition 7 and Equation 1.
the Degree distance index of G:

S(G) < (n—=1)*) d(v) +) (d(v)*—(2n—3)) (d(v))*

< (-1 ) + Yy - 22 ()
< (n=1D%ili+k)+(n—2i—k)(n—i—k—1)+i(n—1)]

2n —3)

+ [(i+k)i3+(n—2i—k)(n—i—k—1)3+i(n—1)3]—( 4m?

n
= 3i* — (8k — Tn + 6)i® + (9k* — 18kn + 12n? + 15k — 21n + 9)i*
+ (5K — 15nk? + 190" — 60 + 12k — 32kn + 14n* + 13k — 10n + 2)i
+ k' — (4n = 3)K* + (Tn* — 11n + 4)k* — (6n° — 14n* + 10n — 2)k + 2n*
(2n — 3)

n

— 6n° 4+ 6n* —2n — 4m?
Let q(z) = 3z — (8k — Tn+6)z3 + (9k* — 18kn +12n2 4+ 15k — 21n+9)2? + (5k — 15nk? +
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1902k — 6n® + 12k — 32kn + 14n% 4+ 13k — 10n + 2)x with 1 < x < ”’T’H Since x is
an integer,we want to calculate maz(g(z)) in the interval [1, 2=5=1] The first and second

derivatives of ¢(z) are

¢ (x) = 122° +3(8k — Tn + 6)a® + 2(9k* — 18kn + 12n* 4 15k — 21n + 9)x

+  (5K* — 15nk® + 19n%k — 6n® + 12k* — 32nk + 14n* + 13k — 10n + 2)

and

¢ (r) = 362+ 6(8k — Tn+ 6)x + 2(9k? — 18nk + 12n* + 15k — 21n + 9)

the discriminant A of the equation ¢ (z) = 0 is A = 36[(8k — Tn + 6)? — 8(9k? — 18kn +
12n% + 15k — 21n + 9)] = —47n? — 8k + 32kn — 24k + 84n — 36) < 0,¥n > 1,k > 1.

n—k—1
2

Therefore ¢ (x) > 0 hence g(z) is convex in the interval [1, q( )]. Hence maz(q(z)) €

[q(1), g(*=£=1)]. By simple calculation, we have

q(1) = 5k% —=3(5n — 7)k? + (19n* — 50n + 36)k — 6n> 4+ 26n* — 38n + 20

— k-1 1
w) = pn—k- D)[17K* + (49n — 35)k> + (n — 1)(6Tn — 39)k — 1103

+ 32n% + 11n — 11]

the difference equation

— k-1 1
TR - g (17K® — (66n — 132)k° + (116n° — 4300 + 410)1?

— (78n% — 510n% 4+ 934n — 604)k + 11n* — 140n® + 438n? — 586n + 309
> 3K+ 2K*+k+2(n>k+1)

> 0,Vk>1
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Hence maz(q(x)) = q(1) then S(G) < k* — (4n — 8)k3 + (Tn* — 26n + 25)k? — (6n> —
33n%+60n —38)k+2n* —12n3 +32n% — 40n+ 20 — 4m2@. The proof is completed. [

Theorem 8. Let GG be a bipartite graph of order 2n, size m and n > 2. If

2n — 3)

S(G) > 4(2n4—5n3+6n2—4n+1)—< 2

4dm
n

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then by Proposition 8 and Equation 1. the

Degree distance index of G:

S(@) < (n=1)") dv)+ ) (dv))’ = (2n—=3) Y (d(v))*
veG veG veG
< (=12 d0) + ) - Z 2 (S aw)?
< (n—=17%[i+ n—i)n+ (n—1i)(n—i)+in)
+ [i+ (n—ind+ (n—i)(n—i)® + inﬂ@éﬁrﬂ
= 2i* — 4ns® + (8n% — 4n + 2)i* — (6n° — 4n” + 2n)i
+ 4n* —4n® 4+ 2n? — wéﬁrf

Let q(z) = 22" — 4na® + (8n? — 4n + 2)2% — (6n3 — 4n? + 2n) + 4nt — 4n3 + 2n? with
1 < x < n. Since x is an integer,we want to calculate max(q(z)) in the interval [1,n — 1]

The first and second derivatives of g(x) are

¢ (r) = 8z° —12n2* +2(8n? —4n + 2)x — (6n® — 4n* + 2n)
and
q () = 242 — 24nz +2(8n® — 4n + 2)
the discriminant A of the equation ¢ () = 0 is A = 576n? — 192(8n? — 4n + 2) =
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—192(5n% —4n +2) < 0,Vn > 2. Therefore ¢ (z) > 0 hence ¢(z) is convex in the interval
[1,n — 1]. max(q(x)) € [¢(1),q(n — 1)]. By simple calculation, we have
q(1) = 4(2n* —5n® +6n* —4n + 1)
and
qin—1) = 4(2n* —5n® +6n®> —4n + 1)

the difference equation ¢(1) — ¢(n — 1) = max(q(x))in [1,n — 1]. We have maz(q(z)) =
q(1). Therefore, S(G) < 4(2n* —5n® +6n* —4n+1) — %. The theorem is proved. [
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