On Degree-Distance index of a graph

Shivaswamy P $M^{1,*}$, Siddaraju² and Nanjundaswamy M^3

Department of Mathematics, BMSCE, Bengaluru 560019, Karnataka, India

²Department of Mathematics Government First Grade College for Women, Chamarajanagara-571313 Karnataka, INDIA.

> ³Department of Mathematics Government first grade college for women Byrapura, T Narasipur taluk, Mysore district - 571124 Karnataka, INDIA.

Abstract

In this article, we give sufficient conditions for the Hamiltonian and graphical properties of graphs in the terms of degree-distance index. The degree distance index of the graph is defined as the $S(G) = \sum_{u,v \in V(G)} (d(u) + d(v)) d_G(u,v)$ where d(u) is the degree of the vertex in a graph and $d_G(u,v)$ is the distance between the vertices u and v in the graph G.

Keyword: Degree distance index, Topological index, Hamiltonian Properties.

1 Introduction

In this paper, we are concerned with a topological invariant of a molecular graph called the Degree distance index. Let G be a connected graph of order n and size m. Let V(G)be the vertex set of G. We use $d_G(u, v)$ to denote the distance between vertices u and v of the graph G, and d(u) is used to denote the degree of the vertex u of the graph. Let K_n denote the complete graph on n vertices. Then the Degree distance index (or degree distance) of G is defined as:

$$S(G) = \sum_{u,v \in V(G)} (d(u) + d(v)) d_G(u,v) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} (d(u) + d(v)) d_G(u,v)$$

Dobrynin and Kochetova [10] and Gutman [11] independently studied the degree distance sum of a graph. The same was studied by Tomescu [22], Tomescu [22] and Bucicovschi and Cioab [7]. A related concept studied earlier for the chemical applications called "Molecular topological index" MTI by H. P. Schultz in 1989 is defined as follows [19]: Let G be a graph with labeled vertices v_1, v_2, \ldots, v_n . Then

$$MTI(G) = \sum_{i=1}^{n} [v(A+D)]_i$$

where A and D are adjacency and distance matrices of G and $v = (d(v_1), d(v_2), ..., d(v_n))$. It can be easily seen from [11] that $MTI(G) = M_1(G) + S(G)$, where $M_1(G)$ is first Zagrab index and S(G) is degree distance index.

A connected graph is said to be traceable (or Hamiltonian) if it has a Hamiltonian path (or cycle). A path (or cycle) is said to be a Hamiltonian path (or cycle) if it traverses through all vertices exactly once. A graph is said to be Hamiltonian-connected if it has a Hamiltonian path between every pair of vertices. A graph is said to be k- connected if it remains connected by removing fewer than k vertices. A graph on n vertices is kedge Hamiltonian if every path of length not exceeding $k, 1 \le k \le n-2$, is contained in a Hamiltonian cycle. The graph G is called k-path coverable if V(G) can be covered by k or fewer than k vertex disjoint paths, obviously 1-path coverable is traceable. For a graph G, if G[V X] is Hamiltonian for all $|X| \leq k$, we call G to be k-Hamiltonian. In particular, 0-Hamiltonian is same as Hamiltonian. For other undefined graph-theoretic notations and terminology, the reader may refer to [6].

The problem of finding a Hamiltonian cycle is NP-complete as reported in [14]. In 2013, Yang [23] studied the Hamiltonian path in terms of the Wiener index and extended it to the Hamiltonian graph [18]. In the same year, Hua [12] discussed sufficient conditions for traceability in terms of the Harary index. Further, sufficient conditions for k-connected, β - deficient, and Hamiltonian cycle in terms of the first Zagreb index are studied in [2]. Also, An [3] studied graph properties based on reciprocal degree distance and An [1] discussed sufficient conditions for Hamiltonian-connectedness in terms of the first Zagreb index and reciprocal distance. In [20], the author(s) described sufficient conditions for k-edge Hamiltonian, k-path coverable, traceable, and Hamilton-connected graphs in terms of the forgotten index. In [13], author(s) studied sufficient conditions for Hamiltonicity with respect to the Wiener index, hyper-Wiener index, and Harary index. The Hamiltonian and graphical properties in terms of the eccentricity-based topological index are studied in [17, 24].

In this article, we explore sufficient conditions for the Hamiltonian path, Hamiltonian cycle, Hamiltonian-connected, and k-connected graphs in terms of the Degree distance index. The paper is organized as follows: In Section 2, we give some useful propositions which are needed in subsequent sections. In Section 3, we present the results and proofs of this paper.

2 Preliminaries

In this section, we will introduce four-degree conditions. In the following propositions, we suppose that the graph satisfies the degree sequence $\pi = (d_1 \leq d_2 \leq \dots \leq d_n)$ condition.

Proposition1. [9] Let G be a graph of order $n \ge 3$ having degree sequence π . If

$$d_i \le i - 1 \le \frac{1}{2}(n - 1) \Rightarrow d_{n-i} \ge n - i - 1$$

then G is traceable.

Proposition2. [9] Let G be a graph of order $n \ge 3$ having degree sequence π . If

$$d_i \le i < \frac{n}{2} \Rightarrow d_{n-i} \ge n-i$$

then G is Hamiltonian.

Proposition3. [8] Let G be a graph of order $n \ge 3$ having degree sequence π . If

$$d_{i-1} \leq i \Rightarrow d_{n-i} \geq n-i+1, for 2 \leq i \leq \frac{n}{2}$$

then G is Hamiltonian connected.

Proposition4. . [4] Let G be a graph of order $n \ge 4$ having degree sequence π . If

$$d_i \le i + k - 2 \Rightarrow d_{n-k+1} \ge n - i, for 1 \le i \le \frac{1}{2}(n - k + 1)$$

then G is k-connected.

Proposition 5. [15] Let G be a graph with degree sequence π and $n \geq 3$ and $0 \leq k \leq n-3$. If

$$d_{i-k} \le i \Rightarrow d_{n-i} \ge n-i+k, fork+1 \le i \le \frac{n+k}{2}$$

then π is k-edge Hamiltonian.

Proposition 6. [9] Let G be graph with degree sequence π and $0 \le k \le n-3$. If

$$d_i \le i + k \Rightarrow d_{n-i-k} \ge n-i, for 1 \le i \le \frac{1}{2}(n-k)$$

then G is k- Hamiltonian.

Proposition 7. [5,16] If $k \ge 1$ and the degree sequence π of G satisfies

$$d_{i+k} \le i \to d_{n-i} \ge n-i-k, for 1 \le i \le \frac{1}{2}(n-k)$$

then G is k-path coverable.

Define a graph G_4 as follows: A graph whose set of vertices has partition $A \bigcup B \bigcup C \bigcup D$ such that |A| = |C| = k and |B| = |D| = m - k and and whose edges connect each vertex $u \in A \bigcup B$ to each vertex $v \in C \bigcup D$ except when $u \in A$ and $v \in D$.

Proposition8. [9]Let G be a bipartite graph with vertices (u_1, u_2, \dots, u_n) and (v_1, v_2, \dots, v_n) such that $d(u_1) \leq d(u_2) \leq \dots \leq d(u_n)$ and $d(v_1) \leq d(v_2) \leq \dots \leq d(v_n)$ and

$$d(u_k) \le k < n \to d(v_{n-k}) \ge n - k + 1$$

Then G is either Hamiltonian or G_4 .

3 Degree distance index and Hamiltonicity

This section gives sufficient conditions for a graph to be traceable, Hamiltonian, Hamiltonianconnected, k-connected graphs, k-path coverable, k-Hamiltonian,k-edge Hamiltonian in terms of Degree distance index. Further, we give sufficient condition for bipartite graph to be Hamiltonian in terms of Degree distance index.

Let G be a connected graph, and S(G) denotes the Degree distance index of G:For a vertex v of G, define $D(v) = \sum_{u \in G} d_G(v, u)$ and D'(v) = d(v)D(v). Then

$$S(G) = \sum_{v \in G} D'(v) = \sum_{v \in G} d(v)D(v) \leq \sum d(v)[d(v) + (n - 1 - d(v))(n - 1 - d(v))]$$
(1)

$$= (n-1)^2 \sum_{v \in G} d(v) - (2n-3) \sum_{v \in G} (d(v))^2 + \sum_{v \in G} (d(v))^3$$

We now have the following:

 $v \in G$

Theorem 1. Let G be a connected graph of order $n \ge 5$ and size m. If

$$S(G) \geq 2n^4 - 12n^3 + 27n^2 - 27n + 10 - \frac{(2n-3)}{n}4m^2$$

then G is traceable.

Proof. Suppose that G is not traceable, then by Proposition 1 and Equation 1, the Degree distance index of G:

$$\begin{split} S(G) &\leq (n-1)^2 \sum_{v \in G} d(v) + \sum_{v \in G} (d(v))^3 - (2n-3) \sum_{v \in G} (d(v))^2 \\ &\leq (n-1)^2 \sum_{v \in G} d(v) + \sum_{v \in G} (d(v))^3 - \frac{(2n-3)}{n} \left(\sum_{v \in G} d(v)\right)^2 \\ &\leq (n-1)^2 [k(k-1) + (n-2k+1)(n-k-1) + (k-1)(n-1)] \\ &+ [k(k-1)^3 + (n-2k+1)(n-k-1)^3 + (k-1)(n-1)^3] \frac{(2n-3)}{n} 4m^2 \\ &= (n-1)^2 [3k^2 - (2n+1)k + n^2 - n] + [3k^4 - (7n-2)k^3 + (9n^2 - 12n+6)k^2 \\ &- (4n^3 - 4n^2 + 3)k + n^4 - 3n^3 + 3n^2 - n] - \frac{(2n-3)}{n} 4m^2 \\ &= 3k^4 - (7n-2)k^3 + (12n^2 - 18n + 9)k^2 - (6n^3 - 9n^2 + 4)k \\ &+ 2n^4 - 6n^3 + 6n^2 - 2n - \frac{(2n-3)}{n} 4m^2 \\ &= 2n^4 - 12n^3 + 27n^2 - 27n + 10 - \frac{(2n-3)}{n} 4m^2 \\ &+ (k-1)[3k^3 - (7n-5)k^2 + (12n^2 - 25n + 14)k - 6n^3 + 21n^2 - 25n + 10] \end{split}$$

Combining with the condition of the Theorem 1, we know that $(k-1)[3k^3 - (7n-5)k^2 + (12n^2 - 25n + 14)k - 6n^3 + 21n^2 - 25n + 10] \ge 0$. Since G is connected and $k \ge d_k + 1 \ge 2$. Let $q(x) = 3x^3 - (7n-5)k^2 + (12n^2 - 25n + 14)x - 6n^3 + 21n^2 - 25n + 10$. Since k is an integer we have $2 \le k \le \frac{n+1}{2}$ is equivalent to $k \le \frac{n}{2}$. So what follows we assume that $k \le \frac{n}{2}$

The first derivative of q(x) is $q'(x) = 9x^2 - 2(7n - 5)x + (12n^2 - 25n + 14)$ and the discriminant Δ of q'(x) = 0 is $\Delta = 4(7n - 5)^2 - 36(12n^2 - 25n + 14) = -4(59n^2 - 155n + 101) < 0 \forall n \ge 2$. Therefore q'(x) > 0 and q(x) is strictly increasing in the interval of $[2, \frac{n}{2}]$. Hence max(q(x)) is obtained at the right endpoint of the interval $[2, \frac{n}{2}]$. We consider

the parity of n. If n is even then

$$max(q(x)) = q(\frac{n}{2}) = -\frac{1}{8}n(n(11n - 78) + 144) + 10 < 0, \forall n \ge 5.$$

If n is odd then

$$max(q(x)) = q(\frac{n-1}{2}) = -\frac{1}{8}(n-1)(n(11n-38)+31) < 0, \forall n \ge 3.$$

Therefore $max(q(x)) < 0 \forall n \ge 5$. Then $S(G) \le 2n^4 - 12n^3 + 27n^2 - 27n + 10 - \frac{(2n-3)}{n} 4m^2$. Thus proof is coplete

Theorem 2. Let G be a connected graph of order $n \ge 12$ and size m. If

$$S(G) \geq 2n^4 - 18n^3 + 82n^2 - 162n + 136 - \frac{(2n-3)}{n}4m^2$$

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then by Proposition 2 and Equation 1, the Degree distance index of G:

$$\begin{split} S(G) &\leq (n-1)^2 \sum_{v \in G} d(v) + \sum_{v \in G} (d(v))^3 - (2n-3) \sum_{v \in G} (d(v))^2 \\ &\leq (n-1)^2 \sum_{v \in G} d(v) + \sum_{v \in G} (d(v))^3 - \frac{(2n-3)}{n} (\sum_{v \in G} (d(v))^2 \\ &\leq (n-1)^2 [k^2 + (n-2k)(n-k-1) + k(n-1)] \\ &+ [k^4 + (n-2k)(n-k-1)^3 + k(n-1)^3] \frac{(2n-3)}{n} 4m^2 \\ &= (n-1)^2 [3k^2 - (2n-1)k + n^2 - n] + [3k^4 - (7n-6)k^3 + (9n^2 - 15n+6)k^2 \\ &- (4n^3 - 9n^2 + 6n - 1)k + n^4 - 3n^3 + 3n^2 - n] - \frac{(2n-3)}{n} 4m^2 \\ &= 3k^4 - (7n-6)k^3 + (12n^2 - 21n + 9)k^2 - (6n^3 - 14n^2 + 10n - 2)k \\ &+ 2n^4 - 6n^3 + 6n^2 - 2n - \frac{(2n-3)}{n} 4m^2 \\ &= 2n^4 - 18n^3 + 82n^2 - 162n + 136 - \frac{(2n-3)}{n} 4m^2 \\ &+ (k-2)[3k^3 - (7n-12)k^2 + (12n^2 - 35n + 33)k - 6n^3 + 38n^2 - 80n + 68] \end{split}$$

Combining with the condition of the Theorem 2, we know that $(k-2)[3k^3 - (7n-12)k^2 + (12n^2 - 35n + 33)k - 6n^3 + 38n^2 - 80n + 68] \ge 0$. Since $2 \le k < \frac{n}{2}$ is equivalent to $k \le \frac{1}{2}(n-1)$. So what follows, we suppose $k \le \frac{1}{2}(n-1)$. Let $q(x) = 3x^3 - (7n-12)x^2 + (12n^2 - 35n + 33)x - 6n^3 + 38n^2 - 80n + 68$ where $2 \le x \le \frac{1}{2}(n-1)$. We divide the proof into following two parts.

Case1:(k-2)q(x) = 0, we have k = 2 or q(x) = 0, It is easy to see that $q'(x) = 9x^2 - 2(7n - 12)x + (12n^2 - 35n + 33)$ and the discriminant Δ of the equation q'(x) = 0 is $\Delta = 4(7n - 12)^2 - 36(12n^2 - 35n + 33) = -4(59n^2 - 147n + 153) < 0 \forall n \ge 1$. Therefore q'(x) > 0 and q(x) is strictly increasing in the interval $2 \le x < \frac{1}{2}(n-1)$. Then $\max(q(x))$ is in the right endpoints of the domain of interval $[2, \frac{1}{2}(n-1)]$. Since k is an integer, we need to consider the parity of n. If n is even then $\max(q(x)) = q(\frac{1}{2}(n-2))$. By a simple calculation, we have

$$q(\frac{1}{2}(n-2)) = -\frac{1}{8}n(n-4)(11n-86) + 44 < 0, \forall n \ge 9$$

If n is odd, then $max(q(x)) = q(\frac{1}{2}(n-1))$. By a simple calculation, we have

$$q(\frac{1}{2}(n-1)) = \frac{1}{8}[-11n^3 + 159n^2 - 421n + 433] < 0, \forall n \ge 12$$

In both the cases q(x) < 0. From the above analysis, we can see that $q(x) \neq 0$ for $2 \leq x \leq \frac{1}{2}(n-1)$ and $n \geq 12$. Hence we only need to consider the case k = 2. If k = 2 then $S(G) \leq 2n^4 - 18n^3 + 82n^2 - 162n + 136 - \frac{(2n-3)}{n}4m^2$. If equality holds then $d_1 = d_2 = 2, d_3 = ... = d_{n-2} = n-3, d_{n-1} = d_n = n-1$, which implies $G = K_2 \vee (2K_1 + K_{n-4})$. But in this case the equality $\sum_{v \in V(G)} d(v)^2 = \frac{1}{n} \left(\sum_{v \in (V(G))} d(v) \right)^2$ does not holds. **Case 2:** (k-2)q(x) > 0. In this case $k \geq 3$ and $q(x) = 3x^3 - (7n-12)x^2 + (12n^2 - 35n + 33)x - 6n^3 + 38n^2 - 80n + 68 > 0$. By **case 1**, we know that q(x) is strictly increasing and max(q(x)) < 0. Therefore for $3 \leq x \leq \frac{1}{2}(n-1)$, we have $3x^3 - (7n-12)x^2 + (12n^2 - 35n + 33)x - 6n^3 + 38n^2 - 80n + 68 < 0$. A contradiction. Thus proof is complete.

References

- M. An, The first Zagreb index, reciprocal degree distance and Hamiltonianconnectedness of graphs Inform. Process. Lett. 176(2022) pp 5.
- [2] M.An and K.Ch. Das, First Zagreb Index,k-Connectivity,βDeficiency and k-Hamiltonicity of Graphs MATCH Commun. Math. Comput. Chem. 80 (2018) 141-151.
- [3] M. An,Y. Zhang,K. Ch. Das and L/ Xiong, Reciprocal degree distance and graph properties Discrete Applied Math. 258(2019) 1-7.
- [4] J. A. Bondy, Properties of graphs with constraints on degree Studia Sci. Math. Hungar. 4 (1969) 473-475.
- [5] J. A. Bondy and V. Chvátal, A Method in Graph Theory Discrete Math. 15 (1976) 111-135.
- [6] J. A. Bondy and U. S. R. Murty, Graph Theory with Application, Springer Publishing Company first ed. (2008).
- [7] O. Bucicovschi and S. M. Cioaba, The minimum degree distance of graphs of given order and size Discrete Appl. Math. 156 (2008) 3518-3521.
- [8] G. Chartrand , S. F. Kapoor and H. V. Kronk, A Generalization of Hamiltonianconnected Graphs J. de Mathématiques Pures et Appliquées, 48 (1969) 109-116.
- [9] V. Chvátal, On Hamilton's Ideals J. Comb. Theory Series B 12(2) (1972) 163-168.

- [10] A. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
- [11] I. Gutman, Selected properties of the Degree distance molecular topological index J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
- [12] H. Hua and M. Wang, On Harary index and traceable graphs MATCH Commun. Math. Comput. Chem. 70 (2013) 297-300.
- [13] G. Jiang, L. Ren, and G. Yu, Sufficient Conditions for Hamiltonicity of Graphs with Respect to Wiener Index, Hyper-Wiener Index, and Harary Index J. Chem. 2019 pp 9.
- [14] R. M. Karp, Reducibility among Combinatorial Problems. in: R. E. Miller, J. W. Thatcher, J. D. Bohlinger, (Eds.) Complexity of Computer Computations. The IBM Research Symposia Series. Springer, Boston, MA. 2009 pp. 85-103.
- [15] H. V. Kronk, A note on k-path hamiltonian graphs J. Combin. Theory 7 (1969) 104-106.
- [16] L. Lesniak, On n-hamiltonian graphs Discrete Math. 14 (1976) 165-169.
- [17] Y. Li and Q. Zhu, On sufficient topological indices conditions for properties of graphs J. Comb. Optim. 41 (2021) 487-503.
- [18] Y. Li and Q. Zhu, On sufficient topological indices conditions for properties of graphs J. Comb. Optim. 41 (2021) 487-503.

- [19] H. P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of alkanes J. Chem. Inf. Comput. Sci. 29 (1989) 227-228.
- [20] G. Su, Z. Li, and H. Shi, Sufficient conditions for a graph to be k-edge-hamiltonian, k-path coverable, traceable and Hamilton-connected Australas. J. Combin. Th. 77 (2020) 269-284.
- [21] A. I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance Discrete Appl. Math. 156 (2008) 125-130.
- [22] I. Tomescu, Some extremal properties of the degree distance of a graph Discrete Appl. Math. 98 (1999) 159-163.
- [23] L. Yang, Wiener Index and Traceable Graphs Bull. Aust. Math. Soc. 88 (2013) 380-383.
- [24] X. Zhu, L. Feng, M. Liu, W. Liu and Y. Hu, Some topological indices and graphical properties Transactions on Combinatorics 6(4) (2017) 51-65.