Pharmaceutical Regulatory Affairs in the Era of AI and Machine Learning: Implications for Decision-Making and Compliance Processes

Vyas Isha Rohitbhai¹ and Dr. Trupesh M. Pethani²

1,2 Department of Pharmaceutical Sciences, Saurashtra University, Rajkot,
Gujarat, India

Abstract:- Artificial Intelligence (AI) and Machine Learning (ML) are transforming pharmaceutical regulatory affairs by automating the data analysis, document handling, and compliance monitoring. These technologies lower submission deadlines and compliance concerns while increasing efficiency and facilitating real-time decision-making. Data integrity, transparency, ethical issues, and the requirement for workforce training are some of the difficulties associated with their integration. This essay examines how AI and ML are now being used in regulatory procedures, highlighting the significance of precise rules, moral protections, and cooperation between technology and human knowledge. By tackling these issues, the pharmaceutical sector can use AI and ML to improve compliance, expedite regulatory processes, and hasten the delivery of safe and efficient treatments.

Key words: Pharmaceutical Regulatory affairs, AI/ML, Compliance

Introduction:

Drug development, clinical trials, and regulatory compliance have all changed as a result of the pharmaceutical industry's adoption of artificial intelligence (AI) and machine learning (ML). The growing complexity and volume of data produced by AI and ML systems is causing a paradigm shift in regulatory affairs (RA), which was once based on set norms and organized decision-making frameworks. These technologies have the potential to expedite market approval timeframes, improve pharmacovigilance, predict compliance issues, and streamline regulatory filings. But they also bring with them new difficulties, such as issues with data integrity, algorithm transparency, and the requirement that regulatory agencies modify their frameworks to take into account dynamic AI-driven processes[1].

In medication discovery, patient stratification, and real-time monitoring, AI and ML have shown promise in facilitating better decision-making and lowering the possibility of human error. Guidance on the validation, auditing, and compliance of AI-based technologies in drug development and post-marketing surveillance is increasingly being released by regulatory bodies like the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), and other international counterparts. The regulatory environment is still fragmented despite these developments, and discussions concerning the moral and legal ramifications of AI-generated decisions continues[2].

This review examines the changing role of artificial intelligence (AI) and machine learning (ML) in regulatory affairs, emphasizing how these technologies are changing compliance and decision-making procedures. It looks at the legal frameworks that now control AI applications, the difficulties in guaranteeing algorithmic transparency and data veracity, and how AI might lead to more effective and flexible legal frameworks. This study attempts to give a thorough grasp of how AI and ML are reshaping the future of

regulatory affairs by addressing both the opportunities and constraints.

1. The Role of AI and Machine Learning in Regulatory Affairs

In the field of regulatory affairs (RA), artificial intelligence (AI) and machine learning (ML) have quickly become game-changing technologies that offer notable enhancements in data management, decision-making, and compliance monitoring. Historically, regulatory procedures have relied on extensive human intervention, document checks, and manual reviews, which makes them laborious and prone to mistakes. By improving effectiveness, precision, and proactive risk management, the combination of AI and ML is overcoming these constraints[1].

1.1. Automation in Regulatory Submissions:

Common Technical Documents (CTD) and electronic submissions (eCTD) are two important regulatory filing procedures that are being automated with AI techniques. Algorithms for natural language processing (NLP) can examine regulatory rules, identify essential requirements, and make sure submission materials adhere to standards. Automated systems can also help with data structuring, which lessens the workload for regulatory experts and reduces errors[3].

1.2. Data Analysis and Pharmacovigilance:

Real-time safety monitoring made possible by AI and ML has completely changed pharmacovigilance. Compared to traditional methods, advanced algorithms can discover potential safety problems and adverse drug reactions (ADR) earlier by analyzing large datasets from clinical trials, post-marketing surveillance, and social media. Better patient safety and quicker regulatory responses are two benefits of these proactive systems[4].

1.3. Predictive Analytics for Decision-Making:

Pharmaceutical businesses can estimate regulatory obstacles, evaluate clinical trial success probabilities, and discover factors that may impact product clearance timeframes with predictive modeling powered by machine learning. AI algorithms that have been trained on historical data, for example, can forecast if a New Drug Application (NDA) would need more information or face regulatory delays[5].

1.4. Adaptive Regulatory Strategies:

The importance of AI in evaluating intricate, unstructured data has been brought to light by the growing use of Real-World Evidence (RWE) in regulatory decision-making. In order to support adaptive regulatory frameworks, AI systems can extract insights from RWE sources such insurance claims data, electronic health records (EHRs), and patient-reported outcomes[6].

2. Applications of AI and ML in Regulatory Affairs:

With the potential to revolutionize a number of procedures, artificial intelligence (AI) and machine learning (ML) are being included into regulatory issues in the pharmaceutical sector more and more. Important uses consist of:

2.1. Automating Regulatory Processes:

Administrative work, dossier preparation, data extraction, auditing, and quality management are among the duties that AI systems can automate. These solutions improve efficiency and reduce errors in regulatory submissions by decreasing manual intervention[3].

2.2. Enhancing Pharmacovigilance:

Large datasets from clinical trials and post-marketing surveillance are analyzed by AI and ML algorithms to identify possible safety issues and adverse drug reactions earlier than with conventional techniques, enhancing patient safety and enabling prompt regulatory measures[7].

2.3. Predictive Analytics for Decision-Making:

ML models estimate the chances of clinical trial success, anticipate regulatory obstacles, and pinpoint variables that could affect the timeframes for product approval, such as predicting whether a new drug application would need more information or experience delays[7].

2.4. Adaptive Regulatory Strategies:

AI supports the creation of flexible regulatory frameworks that can better react to new information and trends by making it easier to analyze complex, unstructured data from real-world evidence sources, such as electronic health records and patient-reported outcomes[5].

2.5. Real-Time Regulatory Intelligence:

Artificial intelligence (AI) systems automatically update compliance procedures in response to new guidelines, laws, or standards by monitoring and analyzing global regulatory developments in real-time. This lessens the manual labor involved in keeping track of regulatory updates and guarantees ongoing compliance.

2.6. Training and Upskilling Regulatory Professionals:

In order to successfully incorporate AI technologies into regulatory procedures, pharmaceutical corporations are funding AI literacy and training initiatives for their employees. Companies like Johnson & Johnson and Merck, for example, have put in place AI training programs to improve staff members' ability to use AI technologies for decision-making and regulatory compliance [8].

3. Ethical and Legal Considerations

Numerous moral and legal issues arise when artificial intelligence (AI) and machine learning (ML) are integrated into healthcare regulations. To guarantee the appropriate and fair application of AI technologies, these issues must be resolved.

3.1. Transparency and Explainability:

Because AI systems frequently operate as "black boxes," it might be challenging to understand how they make decisions. In the healthcare industry, where comprehending the reasoning behind choices is essential, this opacity presents serious difficulties. When

AI-driven choices have significant effects on patient care, a lack of transparency can erode responsibility and confidence. To overcome these issues, efforts to improve explainability—such as the creation of interpretable models and the application of Explainable AI (XAI) techniques—are essential[9].

3.2. Bias and Fairness:

Biases in training data can affect AI algorithms, potentially producing discriminating results. In the medical field, this could lead to incorrect diagnoses or inappropriate treatment recommendations for particular demographic groups. Thoroughly assessing AI systems for potential biases and putting mitigation measures in place, such varied training datasets and ongoing population-specific AI performance monitoring, are necessary to ensure fairness[10].

3.3. Data Privacy and Security:

The use of AI in healthcare raises privacy and data protection issues since it processes enormous volumes of sensitive patient data. To protect personal health information, laws such as the Health Insurance Portability and Accountability Act (HIPAA) must be followed. Strong cybersecurity safeguards must also be in place to stop illegal access and data breaches, which could jeopardize patient privacy and confidence. One strategy that has been investigated to improve privacy preservation in intelligent healthcare systems is federated learning[11].

3.4. Informed Consent:

Reevaluating informed consent procedures is necessary when using AI in clinical decision-making. The advantages, dangers, and restrictions of AI-driven suggestions should all be fully disclosed to patients regarding the use of AI in their care. In order to preserve autonomy and confidence in the patient-provider relationship, it is imperative that patients comprehend how AI fits into their treatment programs. For example, emergency physicians must be aware of the limitations of AI systems, how they work, and how to resolve conflicts between AI and physicians in order to enable informed consent[12].

3.5. Legal Liability and Accountability:

Liability in situations where AI systems cause unfavorable results is a complicated legal matter. It might be necessary to create new legal standards because traditional liability frameworks might not be sufficient to handle situations involving AI. To guarantee accountability and enable suitable legal remedies when needed, clear norms that define responsibilities among AI developers, healthcare professionals, and institutions are needed. Concerns over medical errors brought on by AI, liability issues, and malpractice insurance patterns are some of the legal ramifications of AI in healthcare[13].

4. Benefits of AI and ML in Regulatory Decision-Making:

There are several benefits to incorporating artificial intelligence (AI) and machine learning (ML) into regulatory decision-making processes, which improve responsiveness, accuracy, and efficiency in a variety of industries.

4.1. Enhanced Efficiency and Productivity:

The time required for regulatory agencies to complete data-driven tasks is greatly reduced by AI algorithms' ability to process and analyze enormous volumes of data far more quickly than people. Agencies can react to regulatory requirements and compliance checks more quickly because to this efficiency boost, which raises overall productivity. Workflows are streamlined, results are produced more quickly, and product approval times are shortened when time-consuming tasks are automated. However, issues including privacy, data management security, potential biases, ethical considerations, validation of AI software, and change management has to be addressed[14].

4.2. Improved Decision-Making:

AI can assist regulatory organizations in anticipating issues before they arise by utilizing machine learning and predictive analytics. AI can, for example, anticipate possible financial fraud or pinpoint regions that are more likely to experience environmental infractions, allowing for improved resource allocation and preventative measures. Artificial intelligence (AI) has the potential to improve regulatory affairs decision-making processes, as evidenced by the development of AI-based technologies that increase the consistency and effectiveness of nursing decision-making [15].

4.3. Increased Accuracy:

AI technologies reduce human error in decision-making and data analysis. Their ability to consistently apply rules and evaluate data patterns results in more accurate outcomes for jobs like compliance monitoring and tax fraud detection. Pharmaceutical regulatory procedures can be automated and simplified using AI, which lowers complexity and creates a more effective management system[3].

4.4. Enhanced Public Services:

Artificial intelligence (AI) tools, including as chatbots and virtual assistants, can improve customer service by giving the public quicker and easier access to knowledge about laws and compliance. Additionally, this enables regulatory bodies to concentrate their human resources on more delicate and complicated responsibilities. AI is excellent at processing numerical and perceptual data, allowing for prediction, categorization, and clustering. These capabilities can be incorporated into applications or medical devices to improve functionality and performance in regulated settings[16].

4.5. Cost Reduction:

Regulatory organizations may eventually save a lot of money by implementing AI. Agencies can lower staff expenses and more effectively direct funding toward vital regulatory operations by automating repetitive tasks. AI can simplify the complexities of drug regulation and assist drug regulators in staying up to date with industry trends, which will lower regulatory process costs[17].

5. Challenges and Limitations:

While machine learning (ML) and artificial intelligence (AI) have many benefits for regulatory decision-making, there are a number of obstacles and restrictions that must be overcome for integration to be both ethical and successful.

5.1. Data Quality and Bias:

The quality of the data that AI systems are educated on has a significant impact. Biased or low-quality data might reinforce existing inequities and produce erroneous forecasts. For example, the AI may perform badly across populations, producing unfair results, if training data is not diverse. In the medical field, where biased algorithms may influence diagnosis and treatment recommendations, this is especially troubling [18].

5.2. Lack of Transparency and Explainability:

Many AI models, particularly intricate ones like deep learning networks, function as "black boxes," making it challenging to comprehend the decision-making process. This opacity makes it difficult to get regulatory approval and implement AI in clinical settings because stakeholders need to understand how AI makes decisions in order to trust and validate their use[19].

5.3. Regulatory and Legal Uncertainty:

The establishment of regulatory frameworks has not kept pace with the rapid evolution of AI technologies. Standardized standards for assessing the security, effectiveness, and moral implications of AI systems in healthcare are lacking. For developers and users, this regulatory vacuum breeds ambiguity, which may impede innovation and adoption[20].

5.4. Ethical Concerns:

Ethics pertaining to patient autonomy, informed consent, and accountability are brought up by the application of AI in healthcare. For instance, it's not always obvious who is accountable when an AI system makes a bad recommendation—the institution, the developer, or the physician. Furthermore, patients could not completely comprehend how AI affects their treatment, which would make the informed consent procedure more difficult[21].

5.5. Integration into Existing Workflows:

It can be difficult to integrate AI into established clinical and regulatory systems. It calls for major adjustments to training, culture, and infrastructure. The complexity of integration is increased by professionals used to old methods resistance and the requirement for ongoing monitoring and changes to AI systems[22].

5.6. Data Privacy and Security:

Large datasets, including private health information, are frequently needed by AI systems. Data breaches can have serious repercussions for both individuals and organizations, therefore protecting data privacy and security is crucial. Implementing AI becomes even more challenging when data protection laws like HIPAA and GDPR are followed[23].

6. Future Perspectives and Recommendations:

There is revolutionary potential in incorporating machine learning (ML) and artificial intelligence (AI) into regulatory decision-making procedures in the healthcare industry. However, a number of tactical suggestions have been put out in order to fulfill this potential:

6.1. Establish Robust Ethical and Legal Frameworks:

To address issues with patient autonomy, informed consent, and accountability, thorough ethical and legal norms must be developed. These guidelines ought to guarantee that AI systems function fairly and transparently, building stakeholder trust[24].

6.2. Promote Human-AI Collaboration:

Promoting cooperation between AI systems and human specialists can improve decision-making. The goal of this collaboration should be to enhance human potential so that AI technologies complement human judgment rather than take its place[25].

6.3. Implement Continuous Monitoring and Validation:

To guarantee AI systems' efficacy and safety, ongoing assessment is essential. Putting in place systems for ongoing observation and verification can assist in recognizing and reducing possible hazards related to the application of AI in regulatory contexts[26].

6.4. Enhance Education and Training:

The successful incorporation of AI technologies can be facilitated by funding healthcare workers' education and training initiatives. The development of AI literacy and a knowledge of the moral ramifications of AI in healthcare should be the main goals of these programs[27].

6.5. Advocate for Global Harmonization of Regulations:

Encouraging global cooperation to standardize AI laws can facilitate the cross-border use of AI technologies. This strategy can guarantee that regulatory standards are uniform globally and assist resolve differences in AI deployment[28].

7. Conclusion:

The use of machine learning (ML) and artificial intelligence (AI) into pharmaceutical regulatory concerns represents a revolutionary change in the methodology and implementation of regulatory procedures. These technologies have shown promise in improving decision-making, accuracy, and efficiency in a number of regulatory operations domains, such as data analysis, submission management, and compliance monitoring. By automating labor-intensive processes, artificial intelligence (AI) and machine learning (ML) enable predictive analytics and real-time decision-making, enabling regulatory professionals to maneuver through complex frameworks with ease. Proactive regulatory tactics are made possible by the scalability of AI-driven solutions in processing large datasets, which enables the extraction of insightful information.

However, resolving a number of issues is necessary for the effective application of AI and ML in regulatory activities. These include developing precise regulatory rules to control the use of these technologies, guaranteeing data integrity, and preserving transparency in AI algorithms. Furthermore, in order to make well-informed decisions and quickly adjust to changing regulatory environments, it is essential to cultivate a cordial partnership between human expertise and machine intelligence.

In conclusion, even if AI and ML have a lot of potential to transform pharmaceutical regulatory issues, operational, ethical, and legal considerations must be carefully taken into account when integrating them. The pharmaceutical sector may fully utilize AI and

ML to improve regulatory procedures and, eventually, patient outcomes by tackling these issues and encouraging cooperation among stakeholders.

8. Emerging Themes in AI and Regulatory Compliance: A Bibliometric Snapshot

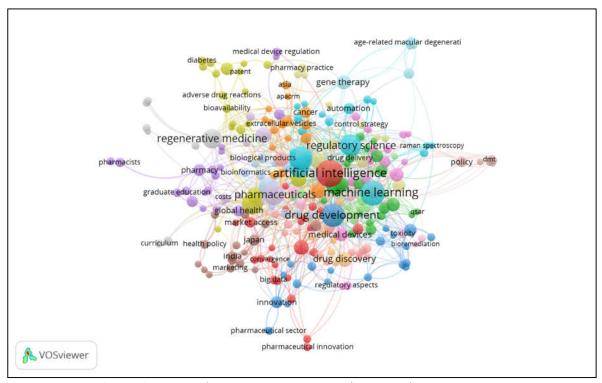


Figure 1. Keyword Co-occurrence Map Using VOSviewer

This map was created using bibliographic information (RIS format) taken from 1,000 research publications that were obtained from the ScienceDirect database between 1999 and 2025. The image, which highlights key subjects like artificial intelligence, regulatory science, pharmaceuticals, drug development, and more, was made using VOSviewer to analyze keyword co-occurrence.

Data Source: ScienceDirect | **Date of Access:** July 27, 2025 | **Time-Period:** 1999–2025 **Software used:** VOSviewer (latest version as of July 2025)

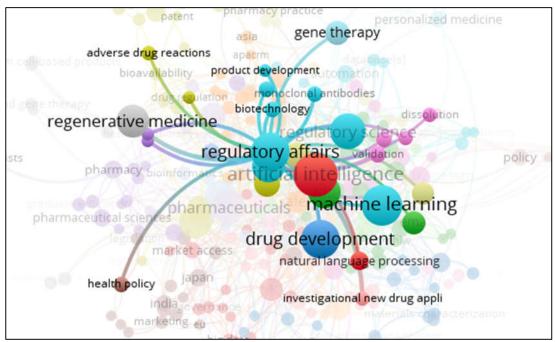


Figure 2: Focused Cluster View Highlighting "Regulatory Affairs" Keywords

This partial view of the VOSviewer map zooms into the cluster most relevant to Regulatory Affairs, revealing interconnected terms such as *regulatory compliance*, *approval process*, *risk assessment*, *drug development*, and *pharmacovigilance*. This focused cluster demonstrates how AI and ML are increasingly integrated into regulatory pathways, influencing decision-making, safety monitoring, and documentation processes. By narrowing the view, this figure provides a clearer representation of the regulatory domain within the broader pharmaceutical AI landscape.

Data Source: ScienceDirect | **Date of Access:** July 27, 2025 | **Time-Period:** 1999–2025 **Software Used:** VOSviewer (latest version as of July 2025)

9. References:

- [1] S. Gude and Y. S. Gude, "The synergy of artificial intelligence and machine learning in revolutionizing pharmaceutical regulatory affairs," *Transl. Regul. Sci.*, vol. 6, no. 2, pp. 37–45, 2024, doi: 10.33611/trs.2024-005.
- [2] U.S. Food and Drug Administration, "Guidance Document- Considerations for the Use of Artificial Intelligence to Support Regulatory Decision-Making for Drug and Biological Products." Jan. 2025. [Online]. Available at https://www.fda.gov/media/184830/download (Accessed on July 28, 2025)
- [3] R. S. Patil, S. B. Kulkarni, and V. L. Gaikwad, "Artificial intelligence in pharmaceutical regulatory affairs," *Drug Discov. Today*, vol. 28, no. 9, p. 103700, Sept. 2023, doi: 10.1016/j.drudis.2023.103700.
- [4] S. Gude and Y. S. Gude, "The synergy of artificial intelligence and machine learning in revolutionizing pharmaceutical regulatory affairs," *Transl. Regul. Sci.*, vol. 6, no. 2, pp. 37–45, 2024, doi: 10.33611/trs.2024-005.
- [5] L. Fu, G. Jia, Z. Liu, X. Pang, and Y. Cui, "The applications and advances of artificial intelligence in drug regulation: A global perspective," *Acta Pharm. Sin.*

- B, vol. 15, no. 1, pp. 1–14, Jan. 2025, doi: 10.1016/j.apsb.2024.11.006.
- [6] L. Pantanowitz *et al.*, "Regulatory Aspects of Artificial Intelligence and Machine Learning," *Mod. Pathol.*, vol. 37, no. 12, p. 100609, Dec. 2024, doi: 10.1016/j.modpat.2024.100609.
- [7] C. S. Ajmal *et al.*, "Innovative Approaches in Regulatory Affairs: Leveraging Artificial Intelligence and Machine Learning for Efficient Compliance and Decision-Making," *AAPS J.*, vol. 27, no. 1, p. 22, Jan. 2025, doi: 10.1208/s12248-024-01006-5.
- [8] A. Bate and Y. Luo, "Artificial Intelligence and Machine Learning for Safe Medicines," *Drug Saf.*, vol. 45, no. 5, pp. 403–405, May 2022, doi: 10.1007/s40264-022-01177-0.
- [9] Z. Sadeghi *et al.*, "A review of Explainable Artificial Intelligence in healthcare," *Comput. Electr. Eng.*, vol. 118, p. 109370, Aug. 2024, doi: 10.1016/j.compeleceng.2024.109370.
- [10] R. M. Ratwani, K. Sutton, and J. E. Galarraga, "Addressing AI Algorithmic Bias in Health Care," *JAMA*, vol. 332, no. 13, p. 1051, Oct. 2024, doi: 10.1001/jama.2024.13486.
- [11] M. Ali, F. Naeem, M. Tariq, and G. Kaddoum, "Federated Learning for Privacy Preservation in Smart Healthcare Systems: A Comprehensive Survey," 2022, *arXiv*. doi: 10.48550/ARXIV.2203.09702.
- [12] K. V. Iserson, "Informed consent for artificial intelligence in emergency medicine: A practical guide," *Am. J. Emerg. Med.*, vol. 76, pp. 225–230, Feb. 2024, doi: 10.1016/j.ajem.2023.11.022.
- [13] A. Rosic, "Legal implications of artificial intelligence in health care," *Clin. Dermatol.*, vol. 42, no. 5, pp. 451–459, Sept. 2024, doi: 10.1016/j.clindermatol.2024.06.014.
- [14] C. S. Ajmal *et al.*, "Innovative Approaches in Regulatory Affairs: Leveraging Artificial Intelligence and Machine Learning for Efficient Compliance and Decision-Making," *AAPS J.*, vol. 27, no. 1, p. 22, Jan. 2025, doi: 10.1208/s12248-024-01006-5.
- [15] R. Jago *et al.*, "Use of Artificial Intelligence in Regulatory Decision-Making," *J. Nurs. Regul.*, vol. 12, no. 3, pp. 11–19, Oct. 2021, doi: 10.1016/S2155-8256(21)00112-5.
- [16] P. Graili and B. Farhoudi, "The intersection of digital health and artificial intelligence: Clearing the cloud of uncertainty," *Digit. Health*, vol. 11, p. 20552076251315621, Jan. 2025, doi: 10.1177/20552076251315621.
- [17] L. Fu, G. Jia, Z. Liu, X. Pang, and Y. Cui, "The applications and advances of artificial intelligence in drug regulation: A global perspective," *Acta Pharm. Sin. B*, vol. 15, no. 1, pp. 1–14, Jan. 2025, doi: 10.1016/j.apsb.2024.11.006.
- [18] M. G. Hanna *et al.*, "Ethical and Bias Considerations in Artificial Intelligence/Machine Learning," *Mod. Pathol.*, vol. 38, no. 3, p. 100686, Mar.

- 2025, doi: 10.1016/j.modpat.2024.100686.
- [19] S. Lewin, R. Chetty, A. R. Ihdayhid, and G. Dwivedi, "Ethical Challenges and Opportunities in Applying Artificial Intelligence to Cardiovascular Medicine," *Can. J. Cardiol.*, vol. 40, no. 10, pp. 1897–1906, Oct. 2024, doi: 10.1016/j.cjca.2024.06.029.
- [20] K. Palaniappan, E. Y. T. Lin, S. Vogel, and J. C. W. Lim, "Gaps in the Global Regulatory Frameworks for the Use of Artificial Intelligence (AI) in the Healthcare Services Sector and Key Recommendations," *Healthcare*, vol. 12, no. 17, p. 1730, Aug. 2024, doi: 10.3390/healthcare12171730.
- [21] N. R. Möllmann, M. Mirbabaie, and S. Stieglitz, "Is it alright to use artificial intelligence in digital health? A systematic literature review on ethical considerations," *Health Informatics J.*, vol. 27, no. 4, p. 14604582211052391, Oct. 2021, doi: 10.1177/14604582211052391.
- [22] M. Nair, P. Svedberg, I. Larsson, and J. M. Nygren, "A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixedmethod design," *PLOS ONE*, vol. 19, no. 8, p. e0305949, Aug. 2024, doi: 10.1371/journal.pone.0305949.
- [23] B. Z. Wubineh, F. G. Deriba, and M. M. Woldeyohannis, "Exploring the opportunities and challenges of implementing artificial intelligence in healthcare: A systematic literature review," *Urol. Oncol. Semin. Orig. Investig.*, vol. 42, no. 3, pp. 48–56, Mar. 2024, doi: 10.1016/j.urolonc.2023.11.019.
- [24] E. Sezgin, "Artificial intelligence in healthcare: Complementing, not replacing, doctors and healthcare providers," *Digit. Health*, vol. 9, p. 20552076231186520, Jan. 2023, doi: 10.1177/20552076231186520.
- [25] K. Lekadir *et al.*, "FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare," 2023, *arXiv*. doi: 10.48550/ARXIV.2309.12325.
- [26] J. Morley, C. Morton, K. Karpathakis, M. Taddeo, and L. Floridi, "Towards a framework for evaluating the safety, acceptability and efficacy of AI systems for health: an initial synthesis," 2021, *arXiv*. doi: 10.48550/ARXIV.2104.06910.
- [27] S. Bharati, M. R. H. Mondal, and P. Podder, "A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?," *IEEE Trans. Artif. Intell.*, vol. 5, no. 4, pp. 1429–1442, Apr. 2024, doi: 10.1109/TAI.2023.3266418.
- [28] A. Chakraborty and M. Karhade, "Global AI Governance in Healthcare: A Cross-Jurisdictional Regulatory Analysis," 2024, *arXiv*. doi: 10.48550/ARXIV.2406.08695.