ON PROXIMITY NUMBER OF A GRAPH

Shivaswamy P M

Department of Mathematics, BMSCE, Bengaluru 560019, Karnataka, India

ABSTRACT

A Proximity set S of a graph G is a Split Proximity set if the induced subgraph $\langle V - S \rangle$ is disconnected. The split-proximity number $n_s(G)$ is the minimum cardinality of a split-proximity set. In this paper, we have obtained bounds for $n_s(G)$ in terms of order, size and other parameters of graphs.

Keywords: Domination number, Split Domination Number, Split-Proximity.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

The graphs considered here are finite, undirected, without loops or multiple edges and connected. Unless otherwise stated, all graphs are assumed to have 'p' vertices and 'q' edges.

A set S of vertices in graph G is a Proximity set (n - set) of G if $G = \bigcup_{u \in S} < N(u) >$, where < N(u) > is the subgraph induced by u and all vertices adjacent to $u \in S$, $S\{u\}$ is not Proximity set of G. The Proximity number $n_{\circ}(G)$ of G is a minimum cardinality of a n - set of G. This parameter is introduced by E. Sampathkumar and P. S. Neeralagi [6].

There are many types of domination numbers in literature [2]. Similarly we can define different types of Proximity numbers by imposing certain conditions on Proximity sets and derive some of the properties.

A Proximity set S is said to be a maximal Proximity set of G if the induced subgraph V - S > is not a Proximity set of G. The maximal Proximity number $n_m(G)$ of G is the minimum cardinality of a maximal Proximity set of G. This parameter is introduced by N.D. Soner et al [6].

In this chapter, we introduce the concept of SplitProximity as follows:

A Proximity set S of a graph G is a Split Proximity set if the induced subgraph V - S > is disconnected. The SplitProximity number $n_s(G)$ is the minimum cardinality of a SplitProximity set.

Thus, we observe that for any graph G,

$$\gamma(G) \le n_{\circ}(G) \le n_{s}(G) \le \alpha_{\circ}(G)$$
....(I)

$$\gamma(G) \leq \gamma_S(G) \leq n_S(G) \leq \alpha_{\circ}(G)$$
....(II)

Now we will prove the following results.

2. RESULTS

Theorem A [4] A dominating set D of G is a Split dominating set if and only if there exists two vertices w_1 , $w_2 \in V - D$ such that $w_1 - w_2$ path contains a vertex of D.

Theorem 2.1 For any graph
$$G, n_{\circ}(G) \leq n_{s}(G)$$
.....(1)

Further the bound is attained if and only if there exists two vertices w_1 , $w_2 \in V - S$ such that every $w_1 - w_2$ path contains a vertex of S where S is a $n_0 - set$ of G.

Proof: Equation (1) follows from the definition of SplitProximity set.

Further let S be a Proximity set such that there exists two vertices w_1 , $w_2 \in V - S$ such that every $w_1 - w_2$ path contains a vertex of S. Then < V - S > is disconnected. Hence S is a SplitProximity set. This implies $n_S(G) \le n_O(G)$. Then from (1) we have $n_O(G) = n_S(G)$.

Conversely suppose the bound is attained. Then if S is a Proximity set, it is also a SplitProximity set. This implies $\langle V - S \rangle$ is disconnected. Hence there exist two vertices $w_1, w_2 \in V - S$ such that every $w_1 - w_2$ path contains a vertex S.

Theorem B [6]: For a graph G, $n_{\circ}(G) = \gamma(G)$ if and only if there exists a minimum dominating set S. Such that every line in $\langle V - S \rangle$ belongs to $\langle N(u) \rangle$ for some $u \in D$.

Theorem 2.2 For any graph G,

$$\gamma_S(G) \le n_S(G)$$
....(2)

Further the bound is attained if and only if there exists a minimum Split dominating set S such that every line in $\langle V - S \rangle$ belongs to $\langle N(u) \rangle$ for some $u \in S$.

Proof: Since every SplitProximity set is a Split dominating set, hence Split dominating number is less than SplitProximity number. Suppose the bound is attained. This implies the condition is satisfied from Theorem 5.A [4].

Conversely, suppose that given condition is satisfied for some Split dominating set S. Then again by Theorem 5.B [6], S is a Proximity set. Since $\langle V - S \rangle$ is disconnected. S is a Split Proximity set and hence from (2) the bound is attained.

Theorem C [6] For any graph G without isolated points,

$$\gamma(G) \leq n_{\circ}(G) \leq \alpha_{\circ}(G)$$

Theorem 2.3 For any graph G without isolated points,

$$n_s(G) \leq \alpha_{\circ}(G)$$
....(3)

Further the bound is attained if and only if there exist a Split Proximity set S of G for which V - S is independent with at least two vertices.

Proof :Let S be vertex cover of G. Then, V - S is independent with at least two vertices. This implies, $\langle V - S \rangle$ is disconnected. Also S is a Proximity set from Theorem 5.C [6]. Hence S is a Split Proximity set of G. This proves that the Split Proximity number is less than or equal to vertex covering number.

Now to prove the second part, suppose there exist a Split Proximity set S of G for which V - S is independent with at least two vertices. This implies S is a vertex cover of G. Thus vertex covering number of G is less than or equal to the cardinality of S. Hence from (3), the bound is attained.

Conversely, suppose equality holds. Then there exists a Split Proximity set S which is a vertex cover with $|S| = \alpha_{\circ}(G)$. Then obviously V - S is independent with at least two vertices.

Theorem D [4] For any graph $G, \gamma \leq \gamma_s$

Hence from Theorem 5.1, 5.2, 5.3, 5.C [6] and 5.D [4]

we have,

$$\gamma(G) \leq n_{\circ}(G) \leq n_{\varsigma}(G) \leq \alpha_{\circ}(G)$$
....(I)

$$\gamma(G) \leq \gamma_s(G) \leq n_s(G) \leq \alpha_\circ(G)$$
....(II)

Theorem 2.4 For any graph G,

$$k(G) \leq n_s(G)$$
....(4)

Where k(G) is the connectivity of graph G.

Proof: Let S be a Split Proximity set of G. Then $\langle V - S \rangle$ is disconnected.

Hence
$$k(G) \leq n_s(G)$$

Next, we list the exact value of $n_s(G)$ for some standard graphs

Theorem 2.5 (i) For a path P_n with n vertices,

$$n_s(P_n) - \left[\frac{n}{3}\right]$$
 $n \ge 3$(5)

(ii) For a circle C_n with n vertices,

$$n_s(C_n) - \left\lceil \frac{n}{2} \right\rceil \qquad n \ge 4....(6)$$

(iii) For a wheel W_n with n vertices,

$$n_s(W_n) = 3$$
 $n \ge 5$(7)

(iv) For a bipartite graph, without isolates, with bipartition $\{v_1, v_2\}$

of V(G),

$$n_s(G) \le \min\{|v_1|, |v_2|\}....(8)$$

Moreover the bound is attained by the graphs $K_{m,n}$

Proof:

- (i) For a path P_n with n vertices where $n \ge 3$, every Proximity set is a Split Proximity set. Hence (5) follows.
- (ii) For a cycle C_n with n vertices where $n \ge 4$, every Proximity set is a Split Proximity set. Hence (6) follows.
- (iii) For a wheel W_n with n vertices where $n \ge 5$, the vertex with degree p-1 together with two non adjacent vertices on the cycle form a Split Proximity set. Hence (7) follows.
- (iv) For a bipartite graph with bipartition $\{V_1, V_2\}$ of V(G), both the sets with cardinality V_1 and V_2 are Split Proximity sets. Hence (8) follows. Further if it is a complete bipartite graph then equality holds since for any V_i , i=1,2,3,...

 $V_i - \{u\}$ is not a Split Proximity set.

Theorem E [6] For any bipartite graph G without isolated points,

$$n_{\circ}(G) = \alpha_{\circ}(G) = \beta_{1}(G)$$

Theorem 2.6 For any bipartite graph G without isolated points,

$$n_{\circ}(G) = n_{\varsigma}(G) = \alpha_{\circ}(G) = \beta_{1}(G)....(9)$$

Proof: This follows from Theorem 5.E [6] and Result (I)

Theorem 2.7 A Split Proximity set S is minimal if and only if for each vertex $v \in S$, one of the following conditions is satisfied

- (i) v is an isolate in $\langle S \rangle$
- (ii) There exist a vertex $u \in V S$ adjacent to v but not adjacent to any vertex $w \in S$ adjacent to v.

(iii)
$$<$$
 $(V - S) \cup \{v\} >$ is connected.

Proof: Suppose S is minimal, on the contrary, if there exists $v \in S$ such that v does not satisfy any of the given conditions. Then $S' = S - \{v\}$ is a Proximity set of G from (i) and (ii) and $\langle V - S' \rangle$ is disconnected from (iii) This implies S' is Split Proximity set of G. This is a contradiction. This proves that necessity.

Sufficiency is straight forward.

Theorem F [1]: For any non trivial connected graph G,

$$\alpha_{\circ}(G) + \beta_{\circ}(G) = p$$

Theorem 2.8:

i) For any graph G,

$$\gamma(G) \le n_{\circ}(G) \le n_{\circ}(G) \le (\chi(G) - 1)\beta_{\circ}(G)....(10)$$

Provided $\chi(G) \ge 2$, where $\chi(G)$ is the chromatic number of graph G.

ii) If G is bipartite graph which is not totally disconnected, Then,

$$\gamma(G) \le n_{\circ}(G) \le n_{\varsigma}(G) \le \beta_{\circ}(G) \le \chi(\bar{G})....(11)$$

Where \bar{G} is complement of G.

Proof: Here we need to establish only the upper bound since lower bounds from I.

From Theorem 5.F [1] and the fact that $p \leq \chi(G)(\beta_{\circ}(G))$

(See [1]) we have,

$$p - \beta_{\circ}(G) \leq \beta_{\circ}(G)(\chi(G) - 1)$$

i.e.
$$\alpha_{\circ}(G) \leq \beta_{\circ}(G)(\chi(G) - 1)$$

Hence (10) follows from (1) and the fact that $\alpha_{\circ}(G) \leq \beta_{\circ}(G)(\chi(G) - 1)$

If G is bipartite, $\chi(G) = 2$. Also (10) implies $n_s(G) \le \beta_{\circ}(G)$

Hence (11) follows from the facts that $n_s(G) \le \beta_o(G)$ and $\beta_o(G) \le \chi(\bar{G})$ (See [1]).

Theorem 2.9 For any graph G,

$$n_s(G) = 1....(12)$$

If and only if there exits a cut vertex with degree p-1

Proof: Suppose v is cutvertex of G of degree p-1, then $\{v\}$ is a Proximity set. Further since $\langle V - \{v\} \rangle$ is disconnected. This implies $\{v\}$ is a Split Proximity set. Hence $n_s(G) = 1$

Conversely, suppose $n_s(G) = 1$. Then, obviously there exists a cutvertex which is adjacent to all vertices. Hence there exists a cutvertex with degree p - 1.

Theorem G [6] For any (p, q) graph G,

$$p - q + q \le n_\circ(G) \le p - \Delta(G)$$

$$\left[\frac{p}{\Delta(G)+1}\right] \le n_{\circ}(G) \le p - \beta_{\circ}(G) + p_{\circ}$$

Where q_0 = minimum {q(<D>;D is a minimal dominating set of G}

 p_{\circ} = the number of isolated vertices in G,

 β_{\circ} = set of independent vertices in G.

Theorem 2.10 For any connected (p, q) graph G,

$$p - q + q_{\circ} \le n_{s}(G)$$
....(13)

$$\left[\frac{p}{\Delta(G)+1}\right] \le n_s(G) \le p - \beta_\circ(G)....(14)$$

Proof : The lower bounds in (13) and (14) follow from (1) and Theorem 5.G [6]. To prove upper bound in (14), we observe that (V - M) is a Split Proximity set where M is the set of β 0 independent points of G.

The lower bound in (13) and (14) is attained for the following graph in Figure 5

The upper bound in (14) is attained for any tree

The lower bound in (14) is attained by the following graph in figure 6.

Theorem 2.11

- (i) $n_s(G) > p \Delta(G)$ if there exist a non-cutvertex of degree p 1
- (ii) $n_s(G) \le p \Delta(G)$ if G has no triangle.

Proof:

- (i) Let G has a non-cutvertex v of degree p-1. Then $\Delta(G)=p-1$. Since v is the non-cutvertex, $n_s(G) \geq 2$. Hence $n_s(G) > p-\Delta(G)$.
- (ii) If G has no triangle then $n_s(G) \le p \Delta(G)$ from (9) and Theorem 5.G [6].

Now we obtain a Nordhaus-Gaddum type result.

Theorem 2.12 Let G be a graph such that both G and \overline{G} are connected, then

$$n_s(G) + n_s(\bar{G}) \le p(p-3)....(15)$$

Further the bound is attained if and only if $G = P_4$

Proof: We have $n_s(G) \le \alpha_{\circ}(G)$ from (3).

Since both G and \bar{G} are connected, $\Delta(G)$, $\Delta(\bar{G}) < p-1$

This implies $\beta_{\circ}(G)$, $\beta_{\circ}(\bar{G}) \geq 2$.

Hence
$$n_s(G) \le p - 2$$

= $2(p - 1) - p$
 $\le (2q - p)$

Similarly $n_s(\bar{G}) \leq 2\bar{q} - p$

Thus
$$n_s(G) + n_s(\bar{G}) \le 2(q + \bar{q}) - 2p$$

$$\le p(p-1) - 2p$$

$$= p(p-3)$$

Suppose the bound is attained, then $n_s(G) = 2q - p$ and $n_s(\bar{G}) = 2\bar{q} - p$. This implies q and $\bar{q} < p$. Hence G and \bar{G} are trees. i.e. $G = P_4$

Now we will establish a relation between Split Proximity number and maximum Proximity number.

Theorem 2.13 Let G be a graph with $\beta_{\circ}(G) \geq 3$ and possess no triangles.

Then,
$$n_s(G) \le n_m(G)$$
....(16)

Proof :Let S be a maximal Proximity set of G. Then < V - S > is totally disconnected with at least two vertices. Thus S is a Split Proximity set. Hence (16) holds.

Theorem H [7] For any graph G,

$$n_m(G) \le \alpha_\circ(G) + 1$$

Theorem 2.14 Let *G* be a graph without triangle, then

$$n_m(G) \le n_s(G) + 1$$
....(17)

Proof: The Proof of (17) follows from (9) and Theorem 5.H [7].

REFERENCES

- [1] F.Harary, **Graph-Theory**, Addison-Wesley Reading Mass, 1969.
- [2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcle Dekker, Inc, Newyork, 1997.
- [3] V.R.Kulli and B.Janakiram, The maximal domination number of a graph, Graph Theory,
 Notes of New York, New York Academy of Sciences, 13: 11-13, 1997.
- [4] V.R.Kulli and Janakiram, The split domination number of a Graph, Graph Theory, Notes of New York Academy of Sciences

XXXII: 16-19, 1997.

- [5] E.A. Nordhaus And J.W. Gaddum, **On complementary graphs**, Amer, Math Monthly, **63**: 175-77, 1956.
- [6] E. Sampathkumar and P.S. Neeralagi, The neighbourhood number of agraph, Indian J. Pure Appl. Math, 16: 126-132, 1985.
- [7] N.D. Soner, B.ChaluvarajuAndB.Janakiram. The maximal neighbourhood number of a graph. Far East J. Appl. Math, 5: 301-307, 2001.