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ABSTRACT 

Food allergy (FA) is a growing global health concern, particularly in pediatric 

populations, and is closely linked to disruptions in gut microbial balance. Mounting evidence 

highlights the crucial role of the gut microbiota in immune system development and in 

modulating allergic sensitization. While probiotics have traditionally been employed to restore 

microbial equilibrium, recent studies suggest that their non-viable derivatives—postbiotics—

offer comparable or even superior health benefits without the associated safety risks of live 

microbes. Postbiotics are bioactive compounds, including short-chain fatty acids (SCFAs), 

bacteriocins, and lipoteichoic acids, produced by probiotic microorganisms either during 

fermentation or after cell lysis. These molecules have demonstrated immunomodulatory, anti-

inflammatory, and barrier-protective properties in various preclinical and clinical models. 

Mechanistically, postbiotics act by enhancing gut epithelial integrity, promoting regulatory T 

cell (Treg) development, modulating cytokine signaling, and inhibiting dysbiosis-related 

inflammatory responses. This review explores the biological role of postbiotics in the 

prevention and treatment of FA, elucidating their molecular mechanisms, therapeutic potential, 

and clinical relevance. Emphasis is placed on their interaction with the gut-immune axis and 

their role in restoring immune tolerance. Given their stability, safety, and multifunctional 

benefits, postbiotics represent a promising new class of functional agents for allergy 

management, particularly in infants and immunocompromised populations. 
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INTRODUCTION 

Food allergy (FA) is one of the most prevalent immune disorders globally, often 

resulting from a breakdown in immune tolerance (Lopez-Fandiño, 2019). It poses a significant 

public health challenge, particularly in developed countries, where it adversely affects patients' 

quality of life (Iweala and Nagler, 2019). Over the past two decades, both the prevalence and 

severity of FA have increased markedly, with considerable health and economic impacts, 

especially in pediatric populations. These include higher medical visits, increased need for 

treatments, and additional healthcare expenditures (Gupta et al., 2011; Paparo et al., 2019). 

 

To date, more than 170 food items have been identified as potential allergens. The most 

serious allergic reactions are commonly triggered by the consumption of fish, shellfish, 

peanuts, milk, tree nuts, soy, wheat, seeds, and eggs. However, the prevalence of specific food 

allergens may vary across individuals, populations, and geographical regions (Gupta et al., 

2011; National Academies of Sciences and Medicine, 2017; Panel, 2010; Sicherer et al., 2010). 

 

The development of FA is influenced by various risk factors, including genetic 

predispositions, environmental exposures, and their interactions, which contribute to immune 

tolerance failure (Canani, Gilbert, and Nagler, 2015; Paparo et al., 2017). Emerging evidence 

highlights the critical role of the gut microbiota in immune development. Gut microbial 

composition and diversity, particularly in early life, are now recognized as key modulators of 

immune responses and the onset of food allergies (Prince et al., 2015). Thus, establishing and 

maintaining gut microbial eubiosis is considered essential for the prevention and management 

of FA. 

 

NON-ALLERGEN SPECIFIC THERAPIES AND THE ROLE OF PROBIOTICS 

In recent years, a variety of therapeutic strategies have been developed to address FA, 

encompassing both allergen-specific and non-allergen-specific approaches. These include: 

1. Enhancing specific IgG or IgA levels, 

2. Inhibiting Th2 effector cells, 

3. Promoting regulatory T cell responses, and 

4. Reducing allergen-specific IgE levels (Berin, 2014). 

 

Among non-allergen-specific strategies, the use of probiotics has gained substantial 

interest. Probiotics are defined as live microorganisms that, when administered in adequate 
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amounts, confer health benefits to the host (Adams, 2010; Hill et al., 2014). Preclinical and 

clinical studies suggest that probiotics may alleviate FA by promoting immune tolerance 

(Lunjani et al., 2018). These beneficial effects are primarily attributed to their interaction with 

the innate immune system. Key mechanisms include: 

 Inducing the secretion of regulatory cytokines, 

 Enhancing mucosal IgA responses, 

 Modulating gut barrier integrity and mucus layer thickness, 

 Stimulating the synthesis of secretory IgA (sIgA) and β-defensins, and 

 Regulating gut microbial communities and their postbiotic outputs (Canani et al., 2016; 

Iweala and Nagler, 2019; Paparo et al., 2019). 

 

However, the effectiveness of probiotics is highly dependent on specific strains, the 

quantity administered, and the type of carrier used (Heine, 2018). Importantly, the health-

promoting properties of probiotics are increasingly linked not only to the viable cells but also 

to their non-viable components and metabolic byproducts—referred to as postbiotics 

(Homayouni et al., 2012). 
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POSTBIOTICS: A PROMISING ALTERNATIVE 

Postbiotics refer to non-viable microbial cells, cell components, or metabolites that, 

when administered in adequate amounts, confer health benefits to the host. These include 

soluble factors such as vitamins, bacteriocins, organic acids, enzymes, short-chain fatty acids 

(SCFAs), hydrogen peroxide, ethanol, diacetyl, peptides, cell surface proteins, teichoic acids, 

peptidoglycan-derived muropeptides, endo- and exopolysaccharides, lactocepins, 

plasmalogens, polyphosphates, and quorum-sensing molecules. These bioactive compounds 

may be naturally produced during fermentation or synthesized under controlled laboratory 

conditions (de la Rosa et al., 2019; Homayouni Rad et al., 2020; Rai, Pandey, and Sahoo, 2018). 

 

Postbiotics offer several advantages, including enhanced safety, stability, and 

reproducibility. They may exert various health effects similar to probiotics, including 

immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial activities (Figure 1 

illustrates the major classes of postbiotics). 

 

CONCERNS REGARDING LIVE PROBIOTIC ADMINISTRATION 

While probiotics are traditionally defined as live microbial cells (Mohamadshahi et al., 

2014; Sanaie et al., 2013), growing evidence suggests that viability is not always required to 

achieve health benefits. Non-viable probiotic fractions—such as cell-free extracts, purified cell 

walls, or culture supernatants—have demonstrated bioactivity (Gueniche et al., 2010; Raman, 

Ambalam, and Doble, 2016). In commercial preparations, the proportion of non-viable cells 

can exceed that of viable cells, suggesting that postbiotics may be the primary contributors to 

the observed health effects (Adams, 2010; Dash et al., 2015). 

 

Nevertheless, certain probiotic strains (e.g., Lactobacillus buchneri, L. helveticus, L. 

hilgardii, Bifidobacterium, Bacillus, and Streptococcus thermophilus) used in foods and 

supplements have been associated—albeit rarely—with adverse events. These include 

horizontal gene transfer of antibiotic resistance, expression of virulence factors, translocation 

to sterile tissues, aberrant colonization patterns, and immunopathological responses such as 

bacteremia, sepsis, peritonitis, urogenital infections, meningitis, pneumonia, and infective 

endocarditis, particularly in immunocompromised individuals or severely ill patients (Cohen, 

2018; Imperial and Ibana, 2016; Kothari, Patel, and Kim, 2019; Netzker et al., 2015). 
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ADVANTAGES OF POSTBIOTICS 

Beneficial gut microorganisms produce a range of low molecular weight bioactive 

metabolites that play a crucial role in modulating the growth, reproduction, and activity of other 

beneficial microbes, as well as in maintaining gut cell integrity and protecting the host from 

environmental stressors (Tomar et al., 2015; Zhang et al., 2010). These soluble compounds—

either secreted directly by viable probiotic cells or released following microbial lysis—

accumulate in the intestinal lumen, where they interact with host cells to regulate various 

cellular processes and metabolic pathways, ultimately contributing to improved health 

outcomes (Aguilar-Toala et al., 2018). 

 

Postbiotics exhibit several functional advantages, including efficient absorption, 

metabolism, and excretion, along with the ability to signal and elicit biological responses across 

multiple organs and tissues in the host. As a promising alternative to live probiotics, postbiotics 

address key safety concerns while maintaining or enhancing therapeutic efficacy. 

 

They possess several attractive characteristics such as: 

 Defined and stable chemical structures, 

 A favorable safety profile with non-toxic nature, 

 Enhanced shelf life and storage stability, 

 Resistance to enzymatic degradation in the mammalian gastrointestinal tract, and 

 Functional stability under diverse physiological conditions (Kataria et al., 2009; Paparo 

et al., 2019). 

 

BIOLOGICAL ROLE OF POSTBIOTICS IN THE PREVENTION AND TREATMENT 

OF FOOD ALLERGY 

Food allergy (FA) has been increasingly associated with disruptions in the composition 

and function of the gut microbiota. The epithelial interfaces of the gastrointestinal tract are 

frequent sites of allergic inflammatory responses (Park, Lee, and Hong, 2018; Savage et al., 

2018). The gut microbiome not only plays a vital role in digestion and resistance to pathogen 

invasion but also produces a range of bioactive metabolites that are critical for maintaining 

epithelial barrier function and modulating immune responses (Riiser, 2015). 

 

Various endogenous and exogenous factors—such as host genetics, diet, environmental 

exposures, psychosocial stress, medication, and infections—can influence the structure and 
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functionality of the gut microbiota (Honda and Littman, 2012). Epidemiological data and in 

vivo studies suggest that alterations in gut microbial composition, particularly in early life, 

contribute to dysbiosis, which may disrupt immune homeostasis and predispose individuals to 

allergic disorders (Fujimura et al., 2016; Ho and Bunyavanich, 2018). Notably, microbial 

disturbances within the first 1,000 days of life—especially during the first 100 days—can 

significantly affect inflammatory pathways and the development of immune-mediated diseases 

such as FA (Dominguez-Bello et al., 2011; Arrieta et al., 2015). 

 

A dysbiotic gut environment is often characterized by a shift in microbial populations 

toward pathogenic strains. These pathogenic microbes can outcompete beneficial species, 

disrupt colonization of protective microbiota, and produce harmful secondary metabolites (e.g., 

toxins), ultimately impairing host health (Odenwald and Turner, 2019). In such scenarios, the 

consumption of postbiotic-enriched functional foods or nutraceuticals may offer a protective 

strategy by directly inhibiting pathogen growth and toxin production (Homayouni Rad et al., 

2020). The antimicrobial actions of postbiotics are primarily attributed to compounds such as 

short-chain fatty acids (SCFAs) and bacteriocins (Aguilar-Toala et al., 2018). 

 

MECHANISMS OF ACTION 

One critical mechanism by which postbiotics contribute to gut homeostasis is through 

the modulation of oxygen availability in the colon. Butyrate, a well-known SCFA, activates 

PPAR-γ signaling pathways in colonocytes, promoting β-oxidation and establishing a hypoxic 

environment that favors anaerobic, butyrate-producing microbes while inhibiting the expansion 

of potentially pathogenic species (Byndloss et al., 2017). Additionally, dietary fiber—

fermented by beneficial gut microbes—results in a diverse pool of postbiotic compounds that 

interact with host epithelial and immune cells to maintain gastrointestinal homeostasis. 

 

Regular intake of postbiotics enhances mucosal barrier integrity, limits allergen 

translocation into systemic circulation, and reduces allergic sensitization. These effects occur 

through both direct and indirect interactions with immune cells such as dendritic cells (DCs) 

and macrophages (Stefka et al., 2014; Wesemann and Nagler, 2016). Unlike probiotics, which 

introduce foreign microbial strains into the gut, postbiotics support the function of the host’s 

native microbiota, offering a safer and more targeted intervention for restoring immune 

tolerance and managing FA (Iweala and Nagler, 2019; Homayouni Rad et al., 2020). 
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The gastrointestinal tract’s core functions—digestion, absorption, and immune 

defense—are mediated by gut-associated lymphoid tissues (GALT), mucosal immune cells 

(e.g., Th1, Th2, Th17, and Treg cells), antimicrobial peptides (AMPs), secretory IgA, and the 

metabolic byproducts of gut microbiota, including postbiotics (Kurashima and Kiyono, 2017). 

GALT plays a pivotal role in inducing immune tolerance, especially in response to dietary 

proteins encountered by antigen-presenting cells (APCs) in the gut mucosa (Fu et al., 2019). 

The use of postbiotics is a promising strategy to reinforce epithelial barrier function and 

modulate immune responses favorably (Aguilar-Toala et al., 2018). 

 

Experimental studies have identified several key mechanisms by which postbiotics 

support gut barrier function and suppress inflammation: 

 Upregulation of genes involved in tight junction protein synthesis, 

 Activation of transcription factors such as STAT3 and SP1, 

 Enhanced transepithelial electrical resistance in intestinal epithelial cell models (e.g., 

Caco-2, T84, IPEC-J2), 

 Stimulation of AMP production by intestinal epithelial cells (IECs), 

 Restoration of epithelial integrity in inflammatory conditions, such as inflammatory 

bowel disease (IBD) (Miao et al., 2016; Valenzano et al., 2015; Yan and Ajuwon, 2017; 

Zhao et al., 2018). 

 

Moreover, commensal microbes such as Clostridia and their SCFA metabolites (e.g., 

butyrate) stimulate type 3 innate lymphoid cells (ILC3s) in the colonic lamina propria to 

produce IL-22, a cytokine that enhances epithelial defense by inducing AMP secretion from 

Paneth cells and mucus release from goblet cells. This immunological cascade reduces dietary 

antigen penetration into the bloodstream and mitigates allergic sensitization (Sabat, Ouyang, 

and Wolk, 2014; Stefka et al., 2014). 
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Postbiotics and Immune Tolerance in FA 

Preclinical and clinical studies highlight the role of SCFAs, particularly butyrate, in 

promoting immune tolerance by inducing regulatory T cells (Tregs) and reducing inflammatory 

responses to dietary antigens (Di Costanzo et al., 2016; Nowak-Wegrzyn and Chatchatee, 

2017). SCFAs serve as energy sources for colonocytes and act through G-protein-coupled 

receptors (GPRs) such as GPR43 and GPR109A to stimulate IL-10 production by DCs and 

macrophages, supporting Treg development in mesenteric lymph nodes (Paparo et al., 2019). 

 

Oral administration of dietary fiber and SCFA-rich postbiotics (acetate, butyrate) has 

been shown to enhance retinal dehydrogenase activity in CD103⁺ dendritic cells—an essential 

component of vitamin A metabolism—thereby enhancing IgA responses and promoting oral 

tolerance in murine models (Tan et al., 2016). Similarly, butyrate administration has 

demonstrated suppression of acute allergic reactions in vivo (Aitoro et al., 2017). 

 

Lipoteichoic acid (LTA), a postbiotic component derived from Lactobacillus 

plantarum, exhibits anti-inflammatory effects by downregulating TNF-α-induced cytokine 

expression via a TLR-2-dependent pathway. This results in the inhibition of NF-κB and MAPK 

signaling pathways in intestinal epithelial cells (Kim et al., 2012). 

Key mechanisms underlying the therapeutic action of postbiotics in FA include: 
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1. Modulation of Treg activity via histone deacetylase (HDAC) inhibition, 

2. Signaling through GPRs, 

3. Provision of metabolic energy for intestinal epithelial cells, 

4. Induction of anti-inflammatory cytokines (e.g., IL-10, IFN-γ), and 

5. Reduction of DNA methylation rates, contributing to immune regulation (Paparo et al., 

2019; Iweala and Nagler, 2019). 

 

FUTURE PERSPECTIVES 

The effectiveness of postbiotics is influenced by several variables, including the parent 

microbial strain, production and purification methods, the diversity of bioactive molecules, 

dosage, and delivery systems (Heine, 2018; Wegh et al., 2019). Current evidence supports the 

use of postbiotics as a safe and promising adjunct or alternative therapy for preventing and 

managing FA—particularly in vulnerable populations such as infants and young children—

without the risks associated with live probiotics (Castan et al., 2020). 

 

Despite these advances, further research is essential to fully understand the mechanisms 

of action, optimize delivery methods, and confirm clinical efficacy in large-scale human studies 

targeting chronic allergic diseases such as food allergy. 

 

CONCLUSION 

Food allergy continues to pose a major public health challenge, with increasing 

incidence worldwide. The interplay between the gut microbiota and the host immune system 

plays a pivotal role in the pathogenesis of allergic diseases. Postbiotics—non-viable microbial-

derived compounds—have emerged as safe, stable, and effective alternatives to live probiotics. 

They exert their health-promoting effects by enhancing epithelial barrier function, modulating 

host immune responses, suppressing inflammation, and promoting immune tolerance through 

well-defined molecular pathways. 
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